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Review

Key takeaways from Central Limit Theorem:

1. For any variable X with mean µ and population standard deviation σ,
the sample mean will have a sampling distribution of

X ∼ N(µ, σ/
√
n)

2. CLT justifies use of 68-95-99 rule

3. This holds even if our population is not normally distributed

4. This does not hold for other statistics (i.e., median)

5. If population non-normal, may need more samples for better
approximation
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Central Limit Theorem

In particular, we have that as the size of our sample increases, the
sampling distribution for x approaches

X ∼ N(µ, σ/
√
n)

If we were to standardize our variable

Z =
x − µ

σ/
√
n

so that the mean value of the sampling distribution is 0 with standard
deviation 1, we end up with a standard normal:

Z ∼ N(0, 1)
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Sample Means and Proportions

There is an interesting relationship between means and proportions

For example, consider taking a fair coin and flipping it 10 times. How
many heads would you expect to see?
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S = {H,H,T ,T ,H,T ,H,T ,T ,T}
X = {1, 1, 0, 0, 1, 0, 1, 0, 0, 0}

We can find the proportion of heads
from our sample S by simply taking the
total number of heads and dividing by
the total number of flips, giving

p̂ =
4

10

However, if we consider X , which
defines H as 1 and T as 0, we can also
find the sample mean:

x =
1

10

n∑
i=1

xi

= 0.4
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Repeated Samples

Grinnell College STA 209 March 6, 2024 6 / 29



Grinnell College STA 209 March 6, 2024 7 / 29



Central Limit Theorem

For a sample with one proportion, the sampling distribution of our
proportion statistic, p̂ is approximately

p̂ ∼ N

(
p,

√
p(1− p)

n

)

There a few rules of thumb relating to the size and the proportion:

1. n × p ≥ 10

2. n × (1− p) ≥ 10

In particular, it is often difficult to estimate proportions precisely that are
near the boundaries (0 and 1)
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Example

In a study conducted by Johns Hopkins University researchers investigated the
survival of babies born prematurely. They searched their hospital’s medical
records and found 39 babies born at 25 weeks gestation (15 weeks early), 31 of
these babies went on to survive at least 6 months. With your group:

1. Use a normal approximation to construct a 95% confidence interval estimate
for the true proportions of babies born at 25 weeks gestation that are
expected to survive

2. An article on Wikipedia suggetss that 70% of babies born at a gestation
period of 25 weeks survive. Is this claim consistent with the Johns Hopkins
study?
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Example

1. We find that

p̂ =
31

39
= 0.795

SE =

√
0.795(1− 0.795)

39
= 0.065

From here, we found our 95% CI:

0.795± 2× 0.065 = (0.668, 0.922)

2. As 0.7 is contained within our constructed 95% CI, it is consistent with the
results of the study by Johns Hopkins
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Example cont.

We have seen several questions now in the labs and homework in which we
ask, “Based on the data we have seen, is such and such a reasonable
value?”

One method which we could employ is to construct a confidence interval
and see if the value in question is contained within, i.e., “is 0.7 contained
within the interval (0.668, 0.922)?”

Alternatively, we could investigate z-scores

Grinnell College STA 209 March 6, 2024 11 / 29



z-scores

We found in the Johns Hopkins example that p̂ = 0.795 and SE = 0.065.
If we were to construct a z-score of the form

Z =
x − µ

σ

We would find a z-score for the estimate of 70% to be

Z =
0.7− 0.795

0.065

= −1.4615

indicating that an estimate of 70% is less than one and a half standard
deviations away from the mean
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Sampling Distributions with Normal Approximation

Statistic Std. Error Conditions

p̂
√

p(1−p)
n np ≥ 10 and n(1− p) ≥ 10

x σ√
n

Normal population n ≥ 30

p̂1 − p̂2

√
p1(1−p1)

n1
+ p2(1−p2)

n2
Same

x1 − x2
σ1√
n1

+ σ2√
n2

Same
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“Approximations”

Until now, we have been dealing with approximations

In particular, we have primarily dealt with cases in which our sample sizes
were “large enough”

But what happens when they’re not?

Grinnell College STA 209 March 6, 2024 14 / 29



CLT for Sample Mean

We saw from the Central Limit Theorem that our sample mean approaches the
distribution

X ∼ N

(
µ,

σ√
n

)
and, from this information, we have concluded that

X ± C ×
(

σ√
n

)
would provided the intended coverage for an appropriate selection of C .

Indeed, we showed this empirically with the coverage of confidence intervals from
a sample of size n = 20 from a normal distribution N(50, σ = 3.8)
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Estimating Variance

The problem we have lies in our estimation of σ

X ∼ N

(
µ,

σ√
n

)
▶ If we knew σ precisely, the standard deviation of our population, we

would have no issue in computing confidence intervals

▶ If we had enough observations in our sample to estimate σ, we would
likewise run into few problems

X ± C ×
(

σ√
n

)
vs X ± C ×

(
σ̂√
n

)
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Estimating Variance

The problem we have lies in our estimation of σ

X ∼ N

(
µ,

σ√
n

)
▶ If we knew σ precisely, the standard deviation of our population, we

would have no issue in computing confidence intervals

▶ If we had enough observations in our sample to estimate σ, we would
likewise run into few problems

What we need, then, is a way to incorporate our uncertainty about σ into
the confidence intervals we construct around x
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Student’s t-distribution

In the 1890s, a chemist by the name of William Gosset working for Guinness
Brewing became aware of the issue while investigating yields for different barley
strains

In 1906, he took a leave of absence to study under Karl Pearson where he
discovered the issue to be the use of σ̂ with σ interchangeably

To account for the additional uncertainty in using σ̂ as a substitute, he introduced
a modified distribution that has “fatter tails” than the standard normal

However, because Guinness was not keen on its competitors finding out that it
was hiring statisticians, he was forced to publish his new distribution under the
pseudonym ”student”, hence “Student’s t-distribution”
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Student’s t-distribution

Student’s t Distribution:

X ∼ t(n − 1)

1. The t distribution has only one parameter called the degrees of
freedom, equal to n − 1

2. The t distribution has “fatter tails” than the normal distribution,
allowing for the possibility of larger values

3. The t distribution will become normal as n → ∞
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Implications?

What are the implications of this for our confidence intervals?
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stuff

There are special quantile functions in R associated with distributions. In the same way
rnorm() was used to generated RandomNORMals, the function qnorm() will return
the quantiles of a normal distribution

1 > qnorm(c(0.025, 0.975))
2 [1] -1.96 1.96

Here, we see the “2” that we have been using up to this point

Now consider the same quantile for the t distribution (using qt()) with 9 degrees of
freedom (n = 10 observations):

1 > qt(c(0.025, 0.975), df = 9)
2 [1] -2.2622 2.2622

How has the uncertainty in estimating σ impacted our intervals?
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t-Distribution, Key Takeaways

▶ Normal distribution is approximate, t distribution is exact

▶ This is true for all sample sizes

▶ Not considering σ̂ causes us to underestimate variability and width of
CI

▶ We can still use Point±MOE to find CI

▶ Instead of C = 2, we need to use C = qt(., df = n - 1)

▶ If population is very skewed and sample size small, we may need
other options
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