Intervals

Grinnell College

February 28, 2024

<u>~</u> ··			
(arinni	ell (οσe
Grinnin		2011	- 5 -

 $\mu = 50, \ \sigma = 3.8, \ N = 20$

1/40

sampling bias inference variability normal distribution

The Statistical Framework

3/40

- Standard Deviation: A description of the variability in our observations describing average distances from the average or mean. It is often denoted σ
- **Standard Error:** A description of variability in our *estimates* of a parameter (such as the mean). We will denote standard error as *SE*, with $SE = \sigma/\sqrt{n}$, where *n* is the number of observations in our sample

Normal Distribution

 $X \sim N(\mu, \sigma^2)$

Representative Samples

Our data X for today is normally distributed with a mean value of 50 and a standard deviation of $15\,$

Grinnell College

Sample	Mean
Sample 1	51.13
Sample 2	48.38
Sample 3	49.11
Sample 4	53.37
Sample 5	53.25
Sample 6	52.64
Sample 7	51.41
Sample 8	50.16
Sample 9	50.47
Sample 10	46.43

10 Samples

_

Sample	Mean
Sample 1	51.13
Sample 2	48.38
Sample 3	49.11
Sample 4	53.37
Sample 5	53.25
Sample 6	52.64
Sample 7	51.41
Sample 8	50.16
Sample 9	50.47
Sample 10	46.43

Sampling Distribution

This is an example of a sampling distribution

- What values?
- How frequently?
- What can we do with this?

Sampling Distribution

Specifically, this is a distribution of sample means

The same variability that we expect to see in our sampling process is reflected in the distribution of sample means

We will discuss in detail soon:

- How is sampling distribution of X related to population distribution of X?
- How does sample size impact variability?
- Normality assumptions
- Standard error vs standard deviations

For now, recall that our goal here is to determine the mean of our *population*.

If we cannot rely on only our point estimate, \overline{X} , perhaps we can find a range of reasonable values:

Point Estimate \pm Margin of Error

Good place to start

95% seems a reasonable thing to do, which is $\mu\pm 2\sigma$ from the previous slide

If our *point estimate* is \overline{x} and our margin of error for measuring parameters is the standard error, then perhaps

$\overline{x} \pm 2 imes \mathsf{SE}$

would create for us a suitable interval of plausible values

Confidence Intervals

Consider Sample 4 from our experiment X_4 where we find:

$$\overline{X}_4 = 46.35, \qquad SE_4 = 2.79$$

From here, we can construct a 95% confidence interval of:

$$95\%CI = \text{Point estimate} \pm \text{Margin of Error}$$
$$= \overline{X}_4 \pm 2 \times \text{SE}_4$$
$$= 46.35 \pm 2 \times 2.79$$
$$= (40.75, 51.93)$$

What does this even mean?

95% what?

- We are 95% sure it contains the mean?
- The probability of the mean being there is 95%?
- Or something else?

Grinnell College

A confidence interval is an interval that has the following properties:

- It is constructed according to a procedure or set of rules
- It is made with the intention of giving a plausible range of values for a parameter based on a statistic
- There is no probability associated with a confidence interval; it is either correct or it is incorrect

Consider the confidence interval that we constructed on a previous slide from Sample 4:

- It was constructed according to the procedure Point estimate ± Margin of Error
- ▶ It was made to present a reasonable range of values for the *parameter* μ as estimated by the *statistic* \overline{X}
- The interval was (40.75, 51.93). As our true mean is µ = 50, this interval is correct and it *does* contain our true parameter

When we say something has a 95% confidence interval, what we mean is:

The process that constructed this interval has the property that, on average, it contains the true value of the parameter 95 times out of 100

26 / 40

Grinnell College

 $\mu = 50, \ \sigma = 3.8, \ N = 20$

February 28, 2024

To be absolutely clear: we will *never* know if the confidence interval we construct contains the true value of the parameter

This is akin to throwing a dart but never seeing the target

This is the nature of statistical inference: we can describe properties of the *process* that created our intervals, but we can never conclusively speak about the interval itself

29 / 40

Confidence Intervals

It is also worth observing that we can *alter* our process to acheive different results. There is a tradeoff between how frequently we are correct and how much uncertainty we allow in our prediction

Example

Our college dataset, which represents a population, contains 1,095 observations, with 647 private schools and 448 public schools. The distributions and true average cost of each group is given below:

Туре	Average Cost
Private	47073
Public	22766

Example

Let's randomly collect a sample of 50 schools from each group and create a confidence interval for the mean

Туре	\overline{X}	Std. Error
Sample Private ($N = 50$)	44947	1467
Sample Public ($N = 50$)	22833	684

95% CI for Private = Point estimate \pm Margin of Error

$$= \overline{X} \pm 2 \times SE$$
$$= 44947 \pm 2 \times 1467$$
$$= (42013, 47882)$$

Example

Let's randomly collect a sample of 50 schools from each group and create a confidence interval for the mean

Туре	\overline{X}	Std. Error
Sample Private (N = 50)	44947	1467
Sample Public (N = 50)	22833	684

95% CI for Public = Point estimate \pm Margin of Error

$$= \overline{X} \pm 2 \times SE$$
$$= 22833 \pm 2 \times 684$$
$$= (21464, 24201)$$

 $\mu = 50, \ \sigma = 3.8, \ N = 20$

33 / 40

Туре	95% Conf Int.	True Mean
Private	(42013, 47882)	47,073
Public	(21464, 24201)	22,766

Review

- Standard deviation (σ) is an estimate of the amount of variability in our sample, while standard error (σ/\sqrt{n}) is an estimate of the variability in estimating a parameter
- A sampling distribution describes the distribution of a statistic or parameter estimate if we could repeat the sampling process as many times as we wish
- Many sampling distributions follow the 66-95-99 rule with 1/2/3 standard deviations of the mean
- If these properties hold, we can create a reasonable interval of possible parameter values of the form Point Estimate ± Margin of Error
- A **confidence interval** is an interval with the properties that:
 - It is constructed according to a procedure or set of rules
 - It is intended to give plausible range of values for a parameter based on a statistic
 - It has no probability; the interval either contains the true value or it does not

Break

The confidence intervals that we constructed of the form

Point Estimate \pm Margin of Error

relied on assumptions made about our *sampling process* and examined what we might expect if we could repeat it ad infinitum

We are often limited to collecting only a single sample from our population

Further, the degree to which our assumptions are met may be tenuous

The confidence intervals we constructed of the form:

Point Estimate \pm Margin of Error

- Relied on assumptions (TBD) about our sampling process
- Examined what might happen if we could repeat sampling ad infinitum

There are, naturally, some limitations:

- We are limited to collecting a single sample
- Our assumptions may be tenuous

It would be helpful to have a more general method of constructing intervals with similar properties we had before

Somewhat amazingly, we can get around this problem with a technique known as **bootstrapping**

Instead of drawing more samples from our *original population*, we treat our sample as an *estimate* of the population and instead draw bootstrapped samples from our original sample

"Pick yourself up from bootstraps"

