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Review

1. Up to this point, we have focused on taking data that we have
collected and computing statistics:

▶ x
▶ σ̂ and σ̂/

√
n

2. Using our statistics and what we know about sampling distributions,
we have been able to construct ranges of plausible values for
population parameters

3. We are now going to use these tools for hypothesis testing
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Hypothesis Testing

Hypothesis testing involves:

1. Formulating an unambiguous statement about our population

2. Collecting observational or experimental data

3. Determining if the data collected is consistent with our hypothesis

4. Either reject or fail to reject a hypothesis based on the strength of
the evidence
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Examples

We have already seen some examples of this:

▶ Wikipedia claim on proportion of preterm survival

▶ Odds of breast cancer for women giving birth

▶ Skewness metric in our rain data

In each of these cases, we considered some claim and then used our data
collected to determine if our evidence was consistent with the claim being made

Specifically, we asked if the value associated with our claim (p̂ = 0.7, θ̂ = 1,
CR = 1) was within the bounds of our constructed confidence interval
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Null hypotheses

Typically, we define our hypotheses to take the assumption of no effect,
change, or relationships between variables. We call this a null hypothesis
and denote it H0 (H “naught”)

The idea is that we being with an assumption of the “status quo”, and it
becomes incumbent upon the evidence collected to suggest otherwise
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Common examples include:

▶ Testing if a parameter is equal to zero:

H0 : µ = µ0 = 0

▶ Testing if difference between groups is zero

H0 : µA − µB = µ0 = 0

▶ Testing if odds ratio is equal to one:

H0 : θ = θ0 = 1
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Quantifying Evidence

Until now, it has been sufficient for us to ask,

Is our hypothesized value µ0 contained within the bounds of plausible values?

The result was always a binary yes/no

Though this was always a qualified binary: we might say, “No, it was not
contained within the bounds of our 95% confidence interval, but it is contained
within the bounds of our 99% interval”

What we need, then, is a way to directly quantify the strength of our evidence
without having to consider every possible interval size
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Shifting Means

We have seen from the CLT that

X ∼ N(µ, σ/
√
n)

Though we may never know the true value µ, we can certainly hypothesize
about a value µ0

X
?∼ N(µ0, σ/

√
n)

We can then ask, assuming that the null hypothesis is true and that
µ = µ0, how likely am I to have drawn the value x?
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Strategy

To determine this, we are going to do the following:

▶ Keep our estimate of σ̂ to determine the variability in our sampling
distribution

▶ Shift our interval of likely values to be centered at µ0 instead of x

▶ See if our value x is consistent with our shifted intervals

This reframes the question as, “Assuming H0 is true, how likely are we to
have seen our data?”
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Null Distribution
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Null Distribution
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Null Distribution
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Quantifying Evidence

Here again, the question is framed in terms of a binary yes/no

What we would like instead is to know quantitatively how likely we would
have been to see X assuming the null hypothesis is true

So instead, we will flip the idea of confidence intervals. Instead of saying
“what percentage of our data lies within our confidence interval” we will
instead ask “what percentage of our data would we expect to be at least
as extreme as what we saw?”
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Null Distribution
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Null Distribution
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Quantifying Evidence

The pink shaded region in the last image illustrated how much of our
sampling distribution, under the null hypothesis, is at least as large as x

Just as our confidence interval asks what range of values contains 95% of
possible observations, this new region asks what percentage of
observations are at least as large as x

This percentage, expressed as a probability, is what determines our p-value

p = P(observed data | H0 is true)
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p-values

Why is a p-value a probability?

We know that because of randomness, our observations will never be identical to
the null, and we will never know the absolute truth. Consequently, inference must
be framed in terms of probabilities

If our null hypothesis, H0, is true, what is the probability that we had observed
our given data?

p = P(observed data | H0 is true)

If this probability is very low, we may consider this as evidence against the null
hypothesis, i.e., if p < 0.05 we reject the null hypothesis
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Null distributions and p-values

p-values are notorious for how easily they may be misrepresented. Here are a few
things to know:

▶ A p-value is not the probability that the null hypothesis is false

▶ A p-value is not the probability of an observation being produced by random
chance alone

▶ A p-value does not tell us the magnitude of difference or effect

▶ A p-value must be taken in the context of the study; a p-value of 0.05 is
completely arbitrary

▶ A p-value is a probabilistic statement relating observed data to a hypothesis
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Standardization

Everything about this process is simplified with the Central Limit
Theorem. Instead of checking

X
?∼ N(µ0, σ/

√
n)

we can standardize our test statistic

ẑ =
x − µ0

σ/
√
n

and assume

ẑ ∼ N(0, 1)
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t Statistics

Or, more correctly, since we are using our estimate σ̂ instead of σ, we can
create a t-statistic

t =
x − µ0

σ̂/
√
n

and we instead find our p-values based on the assumption

t ∼ t(n − 1)
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Example

To revist our preterm example, suppose we begin with the null hypothesis
that the survival rate of babies born at 25 weeks gestation have a survival
rate of 70%. This gives

H0 : p0 = 0.7

From the Johns Hopkins study, which included 39 babies, with 31 of them
surviving up to 6 months, we found estimates of the sample proportion
and standard error of

p̂ = 0.795, SE = 0.065
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Example

Using this information, we can construct a t-statistic,

t =
p̂ − p0
σ̂/

√
n

=
0.795− 0.7

0.065

= 1.4615

Because our sample included 39 observations, we know that this will follow
a t distribution with 38 degrees of freedom
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t Distribution

P(Observe data at least as large as t) = 0.1521
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Review

Hypothesis testing involves formulating unambiguous statements about our
population and then checking the consistency of our hypothesis with observed
data

Rather than getting binary yes/no answers, a p-value allows us to quantify to
what extent our observed data is consistent with our null hypothesis

The construction of hypothesis tests lies in the assumptions of our sampling
distributions:

▶ Normality assumptions

▶ t-distribution

We must be vigilant in our use and reporting of p-values
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