Simple Linear Regression – Categorical Predictors

Grinnell College

February 16, 2024

$$\hat{y} = \hat{\beta_0} + X \times \hat{\beta_1}$$

- Describe how correlation and regression related
- Why regression?
- Be able to predict an outcome, given a predictor
- Interpret the slope and intercept (if applicable)
- Assess the quality of a fitted line

Consider how data is stored in our data frames in R

Name	Private
Adrian College	Private
Alabama A&M	Public
Alfred University	Private
Beloit College	Private
Binghamton University	Public

How might these be used in regression?

Name	Private	Nar	ne
Adrian College	Private	Adı	rian
Alabama A&M	Public	Ala	bam
Alfred University	Private	Alfı	red l
Beloit College	Private	Bel	oit (
Binghamton University	Public	Bin	ghai

Name	Public	Private
Adrian College	0	1
Alabama A&M	1	0
Alfred University	0	1
Beloit College	0	1
Binghamton University	1	0

Name	Public	Private
Adrian College	0	1
Alabama A&M	1	0
Alfred University	0	1
Beloit College	0	1
Binghamton University	1	0

$$\mathbb{1}_{Private} = \begin{cases} 1 & \text{if Private} \\ 0 & \text{if Public} \end{cases}$$
$$\mathbb{1}_{Public} = \begin{cases} 1 & \text{if Public} \\ 0 & \text{if Private} \end{cases}$$

8 / 20

Indicator Variables

$$Avg Fac Sal = 71,836 \times \mathbb{1}_{Private} + 79,636 \times \mathbb{1}_{Public}$$

Name	Public	Private	Fac Sal
Adrian College	0	1	72873
Alabama A&M	1	0	63909
Alfred Uni	0	1	58410
Beloit College	0	1	63387
Binghamton Uni	1	0	88011
:	:	:	:
•	•	•	•

Private	Average Fac Salary
Private	71836
Public	79636

9 / 20

By default, the first indicator will be absorbed into an intercept, making it the *reference variable*

```
1 > lm(Avg_Fac_Salary ~ Private, college)
2
3 Coefficients:
4 (Intercept) PrivatePublic
5 71836 7800
```

 $Avg \ Fac \ Sal = 71,836 + 7,800 \times \mathbb{1}_{Public}$

What are my indicator variables going to look like?

model	cty	drv
new beetle	21	f
gti	19	f
mustang	18	r
grand cherokee 4wd	11	4
sonata	21	f
civic	24	f
toyota tacoma 4wd	15	4

What are my indicator variables going to look like?

model	cty	drv	model	cty	drvf	drvr	drv4
new beetle	21	f	new beetle	21	1	0	0
gti	19	f	gti	19	1	0	0
mustang	18	r	mustang	18	0	1	0
grand cherokee	11	4	grand cherokee	11	0	0	1
sonata	21	f	sonata	21	1	0	0
civic	24	f	civic	24	1	0	0
toyota tacoma	15	4	toyota tacoma	15	0	0	1

```
1 > lm(cty ~ drv, mpg)
2
3 Coefficients:
4 (Intercept) drvf drvr
5 14.33 5.64 -0.25
```

- What is the reference variable
- Equation for line?
- Interpretation of intercept? Slope?
- What is the average city mileage for:
 - 4-wheel drive?
 - Front-wheel drive?
 - Rear-wheel drive?

1 > lm(cty ~ drv, mpg)
2
3 Coefficients:
4 (Intercept) drvf drvr
5 14.33 5.64 -0.25

Grinnell College

Often times where we have multiple predictors in linear regression model

Consider an example where we investigate odontoblasts measured in 60 guinea pigs, each receiving three doses of vitamin C a day (0.5, 1, 2mg/day) by one of two methods (orange juice (OJ) or ascorbic acid (VC))

We are interested in finding out two things:

- 1. Is more vitamin C associated with greater odontoblast growth?
- 2. Does the ROA of vitamin C influence odontoblast growth?

Building the model

```
1 > lm(len ~ supp + dose, ToothGrowth)
2
3 Coefficients:
4 (Intercept) suppVC dose
5 9.27 -3.70 9.76
```

- What is the formula for this regression line?
- What is my reference variable?
- How does ascorbic acid compare with orange juice?
- Is more vitamin C associated with greater tooth growth?

Model Interpretation

Model Interpretation

$$\widehat{\text{Tooth Growth}} = 9.27 + -3.70 \times \mathbb{1}_{VC} + 9.76 \times \text{Dose}$$

Model Interpretation

$$Tooth Growth = \begin{cases} 9.27 + 9.76 \times Dose & \text{if OJ} \\ 5.57 + 9.76 \times Dose & \text{if VC} \end{cases}$$

Grinnell College

- Categorical variables can be used in regression
- Indicator and reference variables
- Interpretation using only one categorical
- Interpretation using categorical and continuous