Odds

Grinnell College

February 7, 2025

- Introduce odds and probabilities
- Contingency tables
- Odds ratios

When dealing with a *binary* event, we often speak in terms of **odds**, a *ratio* of "number of successes" to "number of failures"

success : # failure

This is distinct from the idea of **probabilities**, which give a ratio of the "number of successes" to the number of possible outcomes

Odds

Suppose we have a 6-sided die, and we are interested in rolls that land on either 1 or 2 (note how we have turned six distinct outcomes into two "events").

$$\mathsf{Die} = \{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\}$$

The probability of rolling a 1 or 2 is 1/3

- 1. There are 6 possible outcomes
- 2. There are 2 possible successes
- 3. Probably is 2 / 6 = 1/3

The odds of rolling a 1 or 2 are 2:4 (or 1:2)

- 1. There are 2 possible successes
- 2. There are 4 possible failures
- 3. The odds of success are 2:4 (or 1:2)

A **contingency table** is a special two-way table in which both categorical variables have a binary response

	Event	Non-Event
Exposure	A	В
No Exposure	C	D

Specifically, we have event and non-event (order matters)

Determining Association

Situation 1:

	Event	Non-Event
Exposure	6	2
No Exposure	3	2

Situation 2:

	Event	Non-Event
Exposure	103	2
No Exposure	100	2

- 1. Difference in odds for each situation?
- 2. Ratio of odds for each situation?

Odds Ratio

An odds ratio is the ratio of odds between two groups

	Event	Non-Event
Exposure	A	В
No Exposure	C	D

The odds of an event for the exposure group are A:B (or A/B)

▶ The odds of an event for the no exposure group are C:D (or C/D)

The odds ratio for these groups is then the ratio of their odds:

$$OR = \frac{A:B}{C:D} = \frac{A/B}{C/D} = \frac{A \times D}{B \times C}$$

Group Rows

Changing the rows will change which group is being compared to which

Case 1:

	Enjoy Ice Cream	
Age	Yes	No
Child	16	4
Adult	4	8

Case 2:

	Enjoy Ice Cream	
Age	Yes	No
Adult	4	8
Child	16	4

Event vs Non-Event

Which column is our "Event" also changes how we report our results

Case 1:

	Enjoy Ice Cream	
Age	Yes	No
Child	16	4
Adult	4	8

Case 2:

	Enjoy Ice Cream	
Age	No	Yes
Child	4	16
Adult	8	4

Odds Ratio Summary

- Odds and probabilities
- Column/row order matters
- Odds ratios
- OR > 1, OR = 1, OR < 1
 - OR = 1 implies no association. Why?