Goodness of Fit April 23° , 2025 Example: · Lets just say you want to write a standardized exam where every answer (a, b, c,...) have an equal chance of being the answer ·Extreme example: 2 Questions with 2 possible answers Q1, Answer B. So Q2, Answer A, then its even - This is not a good way to construct the test, in the second question, only A can be chosen. New way: Flip a coin for each question, heads -A, tails-B. This is a random process. For even odds you want the probability of A, R=0.5, and R=0.5.

Now lets say you made a machine to randomly assign an answer to each question -> How do we check if this is random? · Real Example: 400 questions with 5 possible answers A B C D E Total Expected 80 80 80 80 80 400 Observed 74 90 76 87 73 400 The t-statistic $\chi^2 = \sum_{i=1}^{\infty} \frac{(observed-expected)^2}{expected}$ f = X-M. ·Testing "goodness of fit" · Test statistic DF: The number · Relates observed to null (expected) · "Chi -squared"
"Kai" of observations ·When H. true, follows known distribution that are independent $\cdot \chi^{2} \text{ on our example} : \chi^{2} = \frac{(80-74)^{2}}{80} + \frac{(80-40)^{2}}{80} + \frac{(80-76)^{2}}{80} + \frac{(80-87)^{2}}{80} + \frac{(80-87)^{2}}{80} + \frac{(80-73)^{2}}{80}$ If you have 3 possibilities on a multiple choice test: ·What does this number mean? a, b, c. And 10 ·The X' distribution depends on degrees of freedom (K-1) questions and 4 questions have answer(a) pra for 95% confidence so and shave (b), you know 3 must have answer (c) to get to 10 answers. Then only (a) and (b) are independent so df=2.

New Example Looking for racial bias in the jury pool of Alameda County

Below is the ra	icial and ethnic	COMPO	sition	of 1453	individ	duals i	in the ju	My poo
along with the	census proporti	e sno					V	JI
3								
	Race Ethnicity	White	Black	Hispanic	Asian	Other	Total	
	Jury Size	780	117	114	384	58	1453	
	Census Percentage	54%	18%	12%	15%	1%	100%	
	_ , , ,		0.01.741	1.0011		111 -	***	

Expected 794.62 261.54 174.36 217.95 14.53 1453

$$\chi^2 = 357 = \frac{(784.62 - 780)^2}{784.62} + \frac{(261.54 - 117)^2}{261.54} + \dots + \frac{(14.53 - 58)^2}{14.53}$$
 $\chi^2 = 9.49$ (for df = 4)
 $\chi^2 > C_{95} = 9$ we will reject the null hypothesis. That is, we conclude that the jury point is not representative of the population. The χ^2 test however does not tell us anything

 χ^2 > Cas so we will reject the null hypothesis. That is, we conclude that the jury pool is not representative of the population. The χ^2 test however does not tell us anything about which groups are over or underrepresented.