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Warm-up

Suppose we are interested in testing the hypothesis that the true average
hallux length for male sharp-shinned hawks is 11mm. To this end, we
collected three samples:

▶ Sample 1: x1 = 12.3178, σ̂ = 5, n = 25

▶ Sample 2: x2 = 12.7109, σ̂ = 5, n = 25

▶ Sample 2: x3 = 12.5109, σ̂ = 5, n = 25

Provide the following additional information:

1. What are the critical values associated with 80% and 90% confidence?

2. What are the error rates associated with 80% and 90% confidence

3. Draw a t-distribution on a sheet of paper and mark where each of
these critical values lay (leave plenty of room)
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Sample 1

From Sample 1, we find x1 = 12.3178, σ̂ = 5, n = 25. The associated
t-statistic is

t =
12.3178− 11

5/
√
25

= 1.3178

▶ What decision do we make regarding H0 at 80% confidence?

▶ What decision do we make regarding H0 at 90% confidence?

▶ What is the greatest amount of confidence we could obtain while still
rejecting H0?

▶ Where does this t-statistic fall relative to the CV you drew in the
warm-up?
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Sample 1
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Sample 2

From Sample 1, we find x2 = 12.7109, σ̂ = 5, n = 25. The associated
t-statistic is

t =
12.7109− 11

5/
√
25

= 1.7109

▶ What decision do we make regarding H0 at 80% confidence?

▶ What decision do we make regarding H0 at 90% confidence?

▶ What is the greatest amount of confidence we could obtain while still
rejecting H0?

▶ Where does this t-statistic fall relative to the CV you drew in the
warm-up?
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Sample 2
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Sample 3

From Sample 1, we find x3 = 12.5109, σ̂ = 5, n = 25. The associated
t-statistic is

t =
12.7109− 11

5/
√
25

= 1.5109

▶ What decision do we make regarding H0 at 80% confidence?

▶ What decision do we make regarding H0 at 90% confidence?

▶ What is the greatest amount of confidence we could obtain while still
rejecting H0?

▶ Where does this t-statistic fall relative to the CV you drew in the
warm-up?
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Sample 3
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Sample 3
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t-distribution

When the null hypothesis is true,

t =
x − µ0

σ̂/
√
n

follows a t-distribution with n − 1 degrees of freedom

The degrees of freedom tells us, relatively speaking, what values are
considered “large”

t = 2.2 may be considered “large” when df = 30 but not when df = 5
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Sample 3

Grinnell College STA 209 April 9, 2025 11 / 21



Sample 3
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Why p-values

▶ Quantifies t-statistic without reference to critical values or degrees of
freedom

▶ Instead allows me to specify an error rate and come to conclusions
accordingly

Make note that each value of C corresponds to an error rate, α, which is
equal to 1 minus the confidence i.e., a 90% confidence corresponds to a
10% error rate

Likewise, each t statistic corresponds to a p-value. When t > C , it will
follow that p < α
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Example (Revisited

Suppose we are interested in testing the hypothesis that the true average
hallux length for male sharp-shinned hawks is 11mm. To this end, we
collected two samples:

▶ Sample 1: x1 = 15.61, σ̂ = 6.72, n = 10

▶ Sample 2: x2 = 13.61, σ̂ = 6.12, n = 25

We might notice in passing that:

1. Sample 1 has an observed sample mean that is further away from µ0

2. Sample 2 has more than double the observations as Sample 1

3. The observed variability in both samples is about the same
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t-statistics and p-values

We can start by constructing t-statistics for each of our samples

Sample 1:

t =
15.61− 11

6.72/
√
10

= 2.17

Sample 2:

t =
13.61− 11

6.12/
√
25

= 2.13

We might conclude that, having the larger t-statistic that Sample 1
provides more evidence against the null; however, the null distribution for
each statistic is different according to its degrees of freedom
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p-values
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p-values
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Drawing Conclusions

Suppose we were wishing to test our hypothesis H0 : µ = 11 with each of
our two samples with a Type I error rate of α = 0.05

Sample 1:
With a t statistic of t = 2.17 following a null distribution with df = 9, we
find a p-value of p = 0.058. Since p > α, we fail to reject our null
hypothesis

Sample 2:
With a t statistic of t = 2.13 following a null distribution with df = 24, we
find a p-value of p = 0.043. Since p < α, we reject our null hypothesis
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Relationship between CI and α

If we were to construct 95% confidence intervals with our observed data,
we would first find critical values for each of our null distributions,
according to sample size (note: Cdf refers to critical value with df degrees
of freedom):

C9 = 2.262 C24 = 2.063

Immediately, we see that for our first sample, t = 2.17 < C9, telling us that
our observed data is within the middle 95% and we would fail to reject

Likewise for our second sample, t = 2.13 > C24, indicating that we would
reject
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Relationship between CI and α

Now consider the confidence intervals themselves:

Sample 1:

15.61± 2.262×
(
6.72/

√
10
)
= (10.8, 20.4)

Sample 2:

13.61± 2.063×
(
6.12/

√
25
)
= (11.1, 16.2)

Here, we see that the null hypothesis H0 : µ = 11 is contained within the
95% confidence interval of Sample 1, indicating that we fail to reject,
while it is not within the interval for Sample 2, indicating rejection
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Review

Hypothesis testing involves formulating statements about our population
and then checking the consistency of our hypothesis with observed data

Rather than getting a binary yes/no answer by checking t-statistics with a
specific critical value, a p-value allows us to quantify to what extent our
observed data is consistent with a null hypothesis

There is a one-to-one relationship between critical values and our Type I
error rate, α

Checking that t < C is equivalent to checking if p < α
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