# Reintroduction of the bdots R package: Methodological and syntactical changes to the bootstrapped differences of timeseries in the context of the Visual World Paradigm

Collin Nolte<sup>a,\*</sup>, Patrick Breheny<sup>b</sup>

<sup>a</sup>Dept. of Statistics, Grinnell College, United States <sup>b</sup>Dept. of Biostatistics, University of Iowa, United States

#### Abstract

In 2018, Seedorff et al. [1] introducts the bdots package to CRAN, an implementation of the bootstrapped differences in timeseries methodology first introduced by Oleson et al. [2]. The present manuscript expands on this work by introducing two critical changes to the bdots package: first, it corrects a methodological issue in the original method that drastically underestimates the Type I error rate; alongside this correction we introduce a new permutation method for identifying differences in timeseries. Second, the entire package has been rewritten to generalize existing functions and accommodate a new collection of tools including automated paired testing, an interactive refitting process, and the ability to define arbitrary curve fitting functions to the observed data. Examples of this new syntax along with illustrations of the added functionality are included. We conclude with a discussion of the present state of the package along with potential avenues for future work.

#### 1. Introduction

In 2017, Oleson et al. [2] introduced the "boostrapped differences in timeseries", a method for detecting time-specific differences in the trajectory of outcomes between experimental groups. Accompanying this was a novel method for controlling the family-wise error rate, particularly in the case of densely sampled time series where constructed test statistics exhibit high degrees of autocorrelation. In 2018, this methodology was instantiated with the introduction of the bdots package to CRAN [1]. Here we reintroduce the bdots package, both with a significant correction to the underlying methodology as well as a number of upgrades that greatly expand upon the capabilities of the original.

This manuscript is not intended to serve as a complete guide for using the bdots package; instead, the purpose is to showcase major changes and improvements with those seeking a more comprehensive treatment directed to the package vignettes. Rather than taking a "compare and contrast" approach, we will first enumerate the major changes, followed by an outline of the updated methodology and a general demonstration of package use. The most significant changes include:

- 1. Major corrections to underlying methodology with implications for prior users of the package
- 2. Introduction of permutation methods
- 3. Simplified user interface
- 4. Introduction of user defined curves
- 5. Allow fitting an arbitrary number of groups at once
- 6. Automatic detection of paired tests based on subject identifier

Email address: noltecollin@grinnell.edu (Collin Nolte)

<sup>\*</sup>Corresponding author

- 7. Allows for non-homogeneous sampling of time points across subjects and groups
- 8. Introduction of formula syntax for bootstrapping difference function
- 9. Introduction of interactive refitting process

We start by clearly describing the type of problem that bdots has been created to solve.

Bootstrapped differences in time series. A typical problem in the analysis of differences in time series involves that of two or more experimental groups containing subjects whose responses are measured over time. In particular, we concern ourselves with the identification of which, if any, of the arbitrarily many points observed witin two groups may differ. Concomitant with this problem is one of multiple comparisons: often these timeseries take the form of dense, highly correlated observations. Examples of these include the growth of tumors in mice or in the changes in proportions of eye fixations over time such as in the Visual World Paradigm which served as the original catalyst for this methodology. In either case, we begin with the assumption that each of the subjects  $i=1,\ldots,n$  within an experimental group has observed data of the form

$$y_{it} = f(t|\theta_i) + \epsilon_{it} \tag{1}$$

where f represents a functional mean structure and the error term  $\epsilon_{it}$  is assumed to be either IID or to possess an AR(1) structure. At present, bdots requires that each of the subjects being compared have the same parametric function f, though this is not strictly necessary at the theoretical level and future goals of the package include accommodating non-parametric mean structures. While the mean structures for each of the subjects is required to be of the same parametric form  $f(\cdot|\theta)$ , each differs in their instance of subject-specific parameters,  $\theta_i$ .

An explicit assumption of the current iteration of **bdots** is that each subject is' parameters within a group g = 1, ..., G is drawn from a group-level distribution

$$\theta_i \sim N(\mu_q, V_q).$$
 (2)

The distribution of parameters  $\theta$  is then used to construct a distribution of functions,  $f(\cdot|\theta)$ , giving a representation of the temporal changes in group characteristics. It is precisely the identification of if and when these temporal changes differ between groups that bdots seeks to accomplish.

# 2. Methodology and Overview

A standard analysis using bdots consists primarily of two steps: using the observed data to estimate group-level distributions of time series and performing hypothesis testing to identify statistically significant differences between them. We will first introduce an updated algorithm for estimating these distributions, followed by a discussion of various methods used to identify temporal differences.

#### 2.1. Estimating Group Distributions

We begin with the assumption that for subject i in group g, we have collected observed data of the form given in Eq. 1, with the subject specific parameter  $\theta_i$  following the distribution in Eq. 2. Each subject is then fit in bdots via the nonlinear curve fitting function nlme::gnls [3], returning for each set of observed data an estimated set of parameters  $\hat{\theta}_i$  and their associated standard errors. From these estimates we are able to construct a sampling distribution for each subject:

$$\hat{\theta}_i \sim N(\theta_i, s_i^2). \tag{3}$$

Just as in Oleson et al. [2], this distribution provides an estimate of the within-subject uncertainty in the estimate of subject-specific function parameters.

The estimation of the group-level distribution given in Eq. 2 is then estimated with a modified bootstrapping procedure where, in addition to random sampling subjects within a group, subject-specific parameters are drawn from the estimated distribution in Eq 3. This permits two distinct sources of variability to be

present in our estimate of group distributions: the variability inherent to the distribution of the group and the uncertainty present in the estimation of individual subject parameters. With this in mind, we propose the following updated algorithm for creating bootstrapped estimates of group level distributions:

- 1. For each subject, fit a nonlinear curve to the functional mean structure given in Eq. 1 to derive estimates for the subject-specific distribution given in Eq. 3
- 2. For a group of size n, select n subjects from the group with replacement
- 3. For each selected subject i in bootstrap b, draw a set of parameters from the subject-specific distribution derived from the curve fitting process in step (1),

$$\theta_{ib}^* \sim N(\hat{\theta}_i, s_i^2). \tag{4}$$

4. Find the mean across all of the bootstrapped  $\theta_{ib}^*$  in group g to construct the bth group bootstrap,  $\theta_{gb}^*$  where, by the law of total variance, we have

$$\theta_{gb}^* = \frac{1}{n} \sum \theta_{ib}^*, \qquad \theta_{gb}^* \sim N\left(\mu_g, \frac{1}{n}V_g + \frac{1}{n^2} \sum s_i^2\right).$$
 (5)

That is, the bootstrapped estimate follows a group level distribution with an additional variance term to account for uncertainty in model estimates

5. Perform steps (2)-(4) B times, using each  $\theta_{ab}^*$  to construct a sample of population curves,  $f(\cdot|\theta_{ab}^*)$ .

The algorithm presented here differs from the original iteration of bdots in a critical way. In Oleson et al. [2], there is no assumption of the between-subject variability presented in Eq. 2, congruent with the assumption that  $\theta_i = \theta_j$  for all subjects i, j within a group. This occurs because of the omission of step (2) in the algorithm above, where instead each subject is included in each bootstrapped sample making the only variance accounted for is that contributed by the within-subject variability. The most relevant consequence of this assumption is that bootstrapped parameter estimates from Eq. 5 fail to account for the  $\frac{1}{n}V_g$  term in the variance which empirically tends to be the larger of the two. In practical terms, this results in a drastic inflation of the Type I error rate. A second, smaller difference presented here is that our algorithm no longer imposes an assumption of an AR(1) error structure by default, though the option to do so is still present in the bdots package.

For now, the final population curves constructed in Step (5) of our algorithm can be used to create estimates of the mean response and associated standard errors at each time point for each of the groups bootstrapped. These estimates are used both for plotting and in the construction of confidence intervals.

## 2.2. Hypothesis Testing for Statistically Significant Differences in Time Series

We now turn our attention to the primary goal of an analysis in bdots, the identification of specific time points in which the distribution of curves of two groups differ in statistically significant ways. An intuitive method for doing so involves testing differences of means at each observed time point; though, in the case of a densely sampled time series, we must take into account the issue of multiple testing to control the family-wise error rate (FWER). This problem is addressed by bdots in two ways: making adjustments to the nominal  $\alpha$  value and through permutation testing, the details of each are presented below.

## 2.2.1. $\alpha$ Adjustment

The first method whereby we control the FWER involves making adjustments to the nominal alpha value, similar to whah is done in a standard Bonferonni correction. Just as in the original iteration of bdots, we are able to construct test statistics from the bootstrapped estimates described in the previous section. These test statistics from the bootstrapped estimates,  $T_t^{(b)}$ , can be written as

$$T_t^{(b)} = \frac{(\overline{p}_{1t} - \overline{p}_{2t})}{\sqrt{s_{1t}^2 + s_{2t}^2}},\tag{6}$$

where  $\bar{p}_{gt}$  and  $s_{gt}$  are mean and standard deviation estimates of the estimated functions at each time point t and for groups 1 and 2, respectively. These statistics can be highly correlated in the presence of densely sampled time series, leading to an inflated Type I error. The FWER in this case can be controlled with the adjustment proposed in Oleson et al. [2], which indeed does simplify to a Bonferonni correction in the event that the observations are found to be independent. Additionally, bdots allows for any of the adjustments present in the p.adjust function from the R stats packages, i.e., Benjamini & Hochberg, FDR, etc.,.

## 2.2.2. Permutation Testing

In addition to modified correction based on the bootstrapped test statistics, bdots provides a permutation test for controlling the FWER. In doing so, we begin by creating an observed test statistic in the following way: first, taking each subject's estimated parameter  $\hat{\theta}_i$ , we find the subject's corresponding parametric curve  $f(t|\hat{\theta}_i)$  (optionally, the user can select to redraw  $\hat{\theta}_i$  from Eq. 3. to account for within-subject variability within each permutation). Within each group, we use these curves to create estimates of the mean population curves and associated standard errors at each point<sup>1</sup>. Letting  $p_{gt}$  and  $s_{gt}$  represent the mean population curve and standard error for group g at time t, we define our observed permutation test statistic,

$$T_t^{(p)} = \frac{|\overline{p}_{1t} - \overline{p}_{2t}|}{\sqrt{s_{1t}^2 + s_{2t}^2}}. (7)$$

We then going about using permutations to construct a null distribution against which to compare the observed statistics from Eq. 7. We do so with the following algorithm:

- 1. Assign to each subject a label indicating group membership
- 2. Randomly shuffle the labels assigned in (1) to create two new groups
- 3. Recalculate the test statistics  $T_t^{(p)}$ , recording the maximum value from each permutation
- 4. Repeat (2)-(3) P times. The collection of P statistics will serve as our null distribution, denoted  $\widetilde{T}$ . Let  $\widetilde{T}_{\alpha}$  be the  $1-\alpha$  quantile of  $\widetilde{T}$ . Areas where the observed  $T_t^{(p)} > \widetilde{T}_{\alpha}$  are designated significant.

Paired statistics can also be constructed in both the bootstrap and permutation methods. This is implemented by ensuring that within each bootstrap the same subjects are selected for each group or by ensuring that each permuted group contains one observation from each subject.

In summary, two methodological changes have been implemented in this current version of bdots: first and most critically, we have corrected the original underlying algorithm to include estimates of the between-subject variability in the distribution of group curves, again with important implications for prior users of the package who may find that their Type I error rates have been severely understated. Additionally, we have introduced a permutation method for identifying temporal-specific differences between groups that requires fewer assumptions about the data generating process. A thorough exploration of the power and FWER of each of these methods, in both the paired and unpaired cases, is presented in need to arxiv submit ch4 of dissertation.

## 3. Package Use

The remainder of this paper will detail the implementation of each of these methods using the bdots package. The two major components of a typical analysis using the bdots package are curve fitting and the identification of statistically significant differences in time series. Within each of these components, we will begin with a high-level explanation of the major changes that have been made, along with a detailed description of the new syntax. We then contextualize this discussion with a real-world example along with illustrations of function calls and return objects.

<sup>&</sup>lt;sup>1</sup>This differs from the bootstrapped test statistic in which the mean of the subjects' parameters was used to fit a population curve, i.e.,  $\frac{1}{n} \sum f(t|\theta_i)$  compared with  $f\left(t|\frac{1}{n} \sum \theta_i\right)$ 

## 3.1. Curve Fitting

The first step in performing an analysis with bdots involves specifying the parametric function which defines the mean structure from Eq. 1 and fitting curves to the observed data for each subject. Throughout this discussion and into the next section, we will use as our real world example a comparison of tumor growth for the 451LuBr cell line in mice with repeated measures across five treatment groups [4]. A depiction of this data is given in Figure 1:

| <pre>&gt; head(mouse, n = 10)</pre> |      |          |     |          |  |  |
|-------------------------------------|------|----------|-----|----------|--|--|
|                                     | ID T | reatment | Day | Volume   |  |  |
| 1:                                  | 1    | Α        | 0   | 47.432   |  |  |
| 2:                                  | 1    | Α        | 5   | 98.315   |  |  |
| 3:                                  | 1    | Α        | 15  | 593.028  |  |  |
| 4:                                  | 1    | Α        | 19  | 565.000  |  |  |
| 5:                                  | 1    | Α        | 26  | 1041.880 |  |  |
| 6:                                  | 1    | Α        | 30  | 1555.200 |  |  |
| 7:                                  | 2    | В        | 0   | 36.000   |  |  |
| 8:                                  | 2    | В        | 4   | 34.222   |  |  |
| 9:                                  | 2    | В        | 10  | 45.600   |  |  |
| 10:                                 | 2    | В        | 16  | 87.500   |  |  |

Figure 1: Illustration of mouse data in long format

A new feature of bdots is the ability to fit and analyze subjects with non-homogeneous time samples. For example, consider the Day column for our mouse data shown in Figure 1, where the first four observations for ID 1 are all different than those for ID 2. For the present analysis, we will be interested in determining if and when the trajectory of tumor growth (measured in volume) changes between any two treatment groups.

There are two primary functions in the bdots package: one for fitting the observed data to a parametric function and another for estimating group distributions and identifying time windows where they differ significantly. The first of these, bfit, is the topic of this section.

The bfit Function. The curve fitting process is performed with the function bfit, taking the following arguments:

```
bfit(data, subject, time, y, group, curveFun, ar, ...)
```

Figure 2: Main arguments to bfit, though see help(bfit) for additional arguments

The data argument takes the name of the dataset being used. subject is the subject identifier column in the data and should be passed as a character. It is important to note here that the identification of paired data is now done automatically based on the subject identifiers in compared groups; as such, it will be important for the user to be sure that if the data is paired that the subject identifiers are the same between subject groups.

The time and y arguments are column names of the time variable and observed outcome, respectively. The group argument takes a character vector of each of the group columns that are meant to be fit, accommodating the fact that bdots is now able to fit an arbitrary number of groups at once provided that the outcomes in each group adopt the same parametric form. ar is a boolean argument indicating whether or not the observed data should be fit with an AR(1) assumption. Lastly, the curveFun argument is used to specify details of the parametric function to which the data will be fit.

curveFun functions. Whereas the previous iteration of bdots had a separate fitting function for each parametric form (i.e., logistic.fit for fitting data to a four-parameter logistic), we are now able to specify the curves we wish to fit independently of the fitting function by passing an argument to bfit. Unlike the previous arguments which took either a data frame or character vector, curveFun takes as an argument

a function call, for example, logistic(). In short, this allows the user to pass additional arguments to further specify the curve at the time the bfit function is called. To briefly illustrate, among the parametric functions now included in bdots is the polynomial function, taking as an additional argument the number of degrees we wish to use. To fit the observed data with a five parameter polynomial in bfit, one would pass the argument curveFun = polynomial(degree = 5). This permits us to further qualify aspects of the polynomial() function at the time the function is declared. Curve functions currently included in bdots are logistic(), doubleGauss(), expCurve(), and polynomial(). In addition to the functions provided by default in the bdots package, bfit can also accept user-created curves; a detailed explanation of how this is done is provided in the appendix as well as with vignette("bdots").

Using our mouse data with the columns shown in Figure 1, we are ready to fit curves to each of the subjects. For this analysis we will fit data to an exponential curve of the form

$$f(t|\theta) = x_0 e^{tk},\tag{8}$$

where  $\theta = [x_0, k]$ . This form is specified in the expCurve() provided by the bdots package. The syntax for calling bfit with the mouse data is as follows:

Having successfully fit curves to our data, we now consider the return object and provided summary functions.

Return Object and Generics. The function bfit returns an object of class bdotsObj, inheriting from class data.table. As such, each row uniquely identifies one combination of subject and group values. Included in this row are the subject identifier, group classification, a nested gnls object, and summary statistics and fitting diagnostics regarding the quality of fit for the curves. Inheriting from data.table also permits us to use data.table syntax to subset the object as is illustrated in Figure 5 where we elect to only plot the first four subjects.

```
> class(mouse_fit)
[1] "bdotsObj"
                 "data.table" "data.frame"
> head(mouse_fit)
   ID Treatment
                       fit
                                R2
                                      AR1 fitCode
              A <gnls[18] > 0.97349 FALSE
1:
   1
                                                3
              B <gnls[18]> 0.83620 FALSE
2: 2
                                                4
3: 3
              E <gnls[18]> 0.96249 FALSE
                                                3
4: 4
              C <gnls[18]> 0.96720 FALSE
                                                3
5: 5
              D <gnls[18]> 0.76156 FALSE
                                                5
6:
    7
              B <gnls[18]> 0.96361 FALSE
                                                3
```

Figure 3: A bfit object inheriting from data.table

Several methods exist for this object, including plot, summary, and coef, returning a matrix of fitted coefficients obtained from gnls.

Fitting Diagnostics. The bdots package was originally introduced to address a very narrow scope of problems, and the fitCode designation is an artifact of this original intent. Specifically, it assumed that all of the observed data was of the form given in Eq. 1 where the observed time series was dense and the errors were autocorrelated. Autocorrelated errors can be specified in the gnls package (used internally by bdots) when generating subject fits, though there are times when the fitter is incapable of converging on a solution. In that instance, the autocorrelation assumption is dropped and constructing a fit is reattempted.

 $R^2$  proved a reliable metric for this kind of data, and preference was given to fits with an autocorrelated error structure over those without. From this, the hierarchy given in Table 1 was derived. fitCode is a numeric summary statistic ranked from 0 to 6 detailing information about the quality of the fitted curve, constructed with the following logic:

```
AR1 <- # boolean, determines AR1 status of fit fitCode <- 3*(!AR1) + 1*(R2 < 0.95)*(R2 > 0.8) + 2*(R2 < 0.8)
```

A fit code of 6 indicates that gnls was unable to successfully fit the subject's data.

bdots today stands to accommodate a far broader range of data for which the original fitCode standard may no longer be relevant. The presence of autocorrelation cannot always be assumed, and users may opt for a metric other than  $R^2$  for assessing the quality of the fits. Additionally, the methodological changes made in this updated version and the introduction of permutation testing makes bdots far more robust to the misidentification of autocorrelation in the identification of statistically significant differences. Although the current iteration of bdots continues to utilize this discrete scale in the assessment of fit quality, the creation of greater flexibility is a priority for future directions of the package.

| fitCode | AR(1) | $R^2$              |
|---------|-------|--------------------|
| 0       | TRUE  | $0.95 < R^2$       |
| 1       | TRUE  | $0.8 < R^2 < 0.95$ |
| 2       | TRUE  | $R^2 < 0.8$        |
| 3       | FALSE | $0.95 < R^2$       |
| 4       | FALSE | $0.8 < R^2 < 0.95$ |
| 5       | FALSE | $R^2 < 0.8$        |
| 6       | NA    | NA                 |

Table 1: Description of the fitCode statistic

While the fit code offers a simple diagnostic for assessing quality of individual subjects, it will often be useful to consider broader summaries for reporting on the quality of fits for groups as a whole. This is done most simply using the summary and plot functions.

Summaries and Plots. Users are able to quickly summarize the quality of the fits with the summary method now provided. For example, we may consider a summary of the fitted mouse data:

```
> summary(mouse_fit)
bdotsFit Summary
Curve Function: expCurve
Formula: Volume ~ x0 * exp(Day * k)
Time Range: (0, 106) [31 points]
Treatment: A
Num Obs: 10
Parameter Values:
     x0
172.232953
         0.056843
0.95 \le R2
AR1,
AR1,
       0.80 < R2 <= 0.95 -- 1
       R2 < 0.8
AR1,
Non-AR1,
       0.95 \le R2
Non-AR1,
       0.8 < R2 <= 0.95
Non-AR1,
       R2 < 0.8
No Fit
                     -- 0
[...]
All Fits
Num Obs:
Parameter Values:
     x0
              k
102.487118
         0.053662
AR1,
       0.95 \le R2
       0.80 < R2 <= 0.95 -- 2
AR1,
       R2 < 0.8
AR1,
       0.95 \le R2
Non-AR1,
Non-AR1,
       0.8 < R2 <= 0.95
                    -- 16
       R2 < 0.8
Non-AR1,
                     -- 11
                     -- 0
No Fit
```

Figure 4: Abridged output from the summary function. Note that this includes data on the formula used, the quality of fits and mean parameter estimates by group, and a summary of all fits combined

It is also recommended that users visually inspect the quality of fits for their subjects, which includes a plot of both the observed and fit data. There are a number of options available in <code>?plot.bdotsObj</code>, including the option to fit the plots in base R rather than <code>ggplot2</code>. This is especially helpful when looking to quickly assess the quality of fits as <code>ggplot2</code> can be notoriously slow with large data sets. Figure 5 includes a plot of the first four fitted subjects.

```
plot(mouse_fit[1:4, ])
```

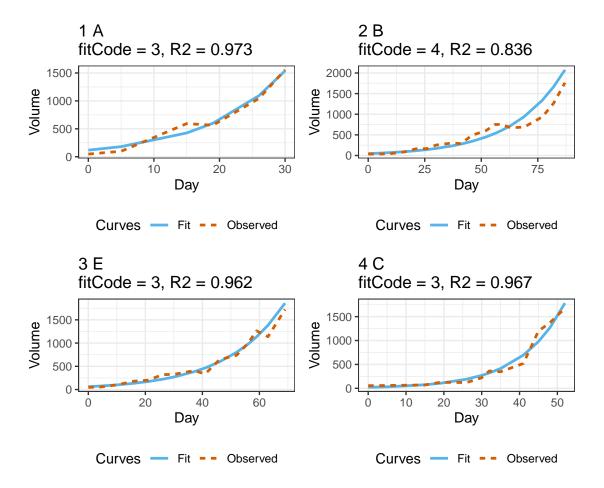


Figure 5: Plot of mouse\_fit using data.table syntax to subset to only the first four observations

bdots provides now an interactive refitting function, brefit, which provides a number of options to help users recalibrate low quality fits. Details on this function and how it is used are provided in Section 3.3.

# 3.2. Identification of Group Differences

Having satisfactorily fit subject-specific parametric curves to the observed data, we are ready to begin estimating the group distributions and investigating temporal differences. This section introduces the function bboot, along with the introduction of a formula syntax that is new and unique to bdots. As before, we will follow each of our descriptions with an illustration of use with the mouse tumor data. Following this, we summarize new generics that are available to the object returned by bboot, including those for the summary and plot functions.

The bboot Function. The number of options included in the bboot function have expanded to include a new formula syntax for specifying the groups we wish to compare, as well as an option to use permutation testing for identifying differences. A call to bboot takes the following form:

The formula argument is new to bdots and will be discussed in the next section. As for the remaining arguments, bdObj is simply the object returned from bfit that we wish to investigate, and B serves the dual role of indicating the number of bootstraps/permutations we wish to perform; alpha is the rate at which

we wish to control the FWER. permutation and padj work in contrast to one another: when permutation = TRUE, the argument to padj is ignored. Otherwise, padj indicates the method to be used in adjusting the nominal alpha to control the FWER. By default, padj = "oleson". Finally, as previously mentioned, there is no longer a need to specify if the groups are paired as bboot determines this automatically based on the subject identifiers in each of the groups.

Formula. As the bfit function is now able to create fits for an arbitrary number of groups at once, we rely on a formula syntax in bboot to specify precisely which groups' differences we wish to compare. Let y designate the outcome variable indicated in the bfit function and let group be one of the group column names to which our functions were fit. Further, let val1 and val2 be two values within the group column. The general syntax for the bboot function takes the following form:

$$y \sim \text{group(val1, val2)}$$

Note that this is an *expression* in R and is written without quotation marks. To give a more concrete example, suppose we wished to compare the difference in tumor growth curves given as Volume for A and B from the Treatment column in our mouse data (Figure 1). We would do so with the following syntax:

Volume 
$$\sim$$
 Treatment(A, B)

The formula syntax is robust to a number of situations not present in our example tumor data, including situations that arise in the case of multiple and/or nested groups and when considering a difference in differences analysis. Each of these is expounded upon in the supplementary materials.

Summary and Analysis. Let's begin first by running bboot to compare the difference in tumor growth between treatment groups A and E in our mouse data using permutations to test for regions of significant difference.

```
mouse_boot <- bboot(Volume ~ Treatment(A, E), bd0bj = mouse_fit)</pre>
```

This returns an object of class bdotsBootObj. A summary method is included to display relevant information:

```
> summary(mouse_boot)
```

bdotsBoot Summary

Curve Function: expCurve

Formula: Volume ~ x0 \* exp(Day \* k) Time Range: (0, 59) [21 points]

Difference of difference: FALSE

Paired t-test: FALSE

Difference: Treatment (A,E)

FWER adjust method: Permutation

Alpha: 0.05

Significant Intervals:

[,1] [,2] [1,] 15 32

There are a few components of the summary that are worth identifying when reporting the results. In particular, note the time range provided, an indicator of if the test was paired and which groups were being considered. The last section of the summary indicates the testing method used, an adjusted alphastar if permutation = FALSE, and a matrix of regions identified as being significantly different. This matrix is

NULL if no differences were identified at the specified alpha; otherwise there is one row included for each disjointed region of significant difference.

In addition to the provided summary output, a plot method is available, with a list of additional options included in help(plot.bdotsBootObj).

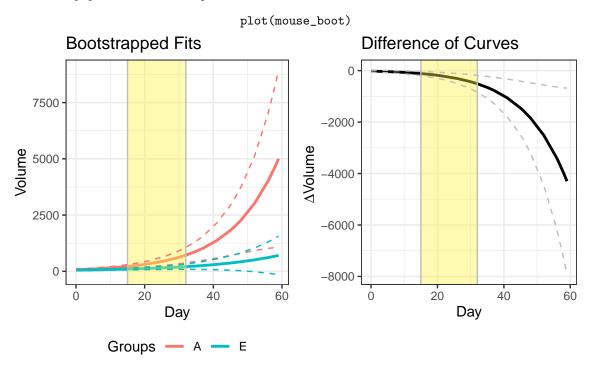


Figure 6: Bootstrapped distributions with regions of significant difference determined via permutation testing

## 3.3. Ancillary Functions

Outside of a standard analysis using the bdots package, there are a suite of additional functions that users may find helpful. Brief descriptions of these functions are given here.

Refitting. The nonlinear curve fitting algorithm used by nlme::gnls in bfit can be sensitive to the starting parameters. Sensible starting parameters are computed from the observed data as part of the curve fitting functions (i.e., within the logistic() function), though these can often be improved upon. The quality of the fits can often be evidenced by the fitCode or via visual inspections of the fitted functions against the observed data. Occasionally, the quality of these fits will be poor. When this occurs, there are several options available to the user, all of which are provided through the function brefit brefit takes the following arguments:

```
brefit(bdObj, fitCode = 1L, subset = NULL, quickRefit = FALSE, paramDT = NULL)
```

The first of these arguments outside of the bd0bj is fitCode, indicating the minimum fit code to be included in the refitting process. As discussed in Section 3.1, this can be a sub-optimal way to specify data to subset. To add flexibility to which subjects are fit there is now the subset argument taking either a logical expression, a collection of indices that would be used to subset an object of class data.table, or a numeric vector with indices that the user wishes to refit. For example, we could elect to refit only the first 10 subjects or refit subjects with  $R^2 < 0.9$ :

```
refit <- brefit(fit, subset = 1:10) # refit the first 10 subjects
refit <- brefit(fit, subset = R2 < 0.9) # refit subjects with R2 < 0.9
```

When an argument is passed to subset, the fitCode argument is completely ignored.

Assisting with the refitting process is the argument quickRefit. When set to TRUE, brefit will take the average coefficients of accepted fits within a group and use those as new starting parameters for poor fits. The new fits will be retained if they have a larger  $R^2$  value for the refitted curve with new parameters. This offeres a great deal of utility by automatically attempting to refit curves without requiring additional user input. When set to quickRefit = FALSE, the user will be guided through a set of prompts to refit each of the curves manually.

Finally, the paramDT argument allows for a data.table with columns for subject, group identifiers, and parameters to be passed in as a new set of starting parameters. This data.table requires the same format as that returned by bdots::coefWriteout. The use of this functionality is covered in more detail in the bdots vignettes and is a useful way for reproducing a bdotsObj from a plain text file.

When quickRefit = FALSE, the user is put through a series of prompts along with a series of diagnostics for each of the subjects to be refit. Here, for example, is the option to refit subject ID 11 from the mouse data:

Subject: 11 R2: 0.837 AR1: FALSE rho: 0.9 fitCode: 4

Model Parameters: x0 k 53.186497 0.051749

#### Actions:

- 1) Keep original fit
- Jitter parameters
- 3) Adjust starting parameters manually
- 4) Remove AR1 assumption
- 5) See original fit metrics
- 6) Delete subject
- 99) Save and exit refitter

Choose (1-6):

There are a number of options provided in this list. The first keeps the original fit of the presented subject and moves on to the next subject in the list. The second option takes the values of the fitted parameter and "jitters" them, changing each of the values by a prespecified magnitude. Given the sensitivity of nlme::gnls to starting parameters, this is sometimes enough for the fitter to converge on a better fit for the observed data. Alternatively, the third option gives the user the ability to select the starting parameters manually. The fourth option gives the user the ability to attempt refitting the observed data without an AR(1) error assumption, though this is only relevant if such an assumption exists. Option (5) reprints summary information and option (6) allows the user to delete the subject all together.

When any attempt to refit the observed under new conditions is presented (options (2)-(4)), a plot is rendered comparing the original fit side-by-side with the new alternative as in Figure 7.

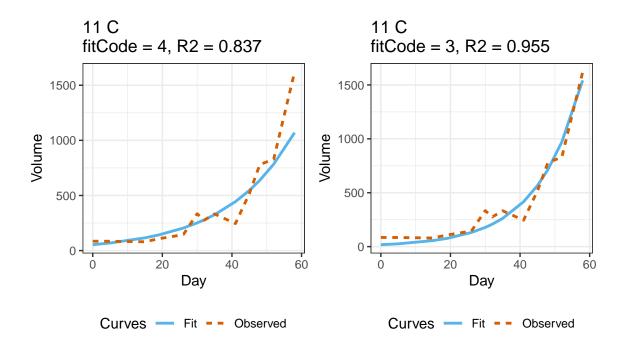


Figure 7: Presentation of curves before and after refitting, with the original given on the left

As the menu item suggests, users have the ability to end the manually refitting process early and save where they had left off. To retain previously refitted items and start again at a later time, pass the first refitted object back into the refitter as such:

```
refit <- brefit(fit, ...)
refit <- brefit(refit, ...) # pass in the refitted object</pre>
```

A final note should be said regarding the option to delete a subject. As bdots now automatically determines if subjects are paired based on subject identifiers (necessary for calculations in significance testing), it is critical that if a subject has a poor fit in one group and must be removed that they are also removed from all additional groups in order to retain paired status. When paired subjects do exist, brefit provides a final prompt to the user before removing them. The removal of subjects can also be done with the ancillary function, bdRemove, useful for removing subjects without undergoing the entire refitting process. See help(bdRemove) for details.

α Adjustment. There may also be situations in which users wish to make an adjustment to autorcorrelated test statistics using the modified Bonferonni adjustment provided in [2], though in a different context than what is done in bdots. To facilitate this, we introduce an extension to the p.adjust function, p\_adjust, identical to p.adjust except that it accepts method "oleson" and takes additional arguments rho and df. rho determines the autocorrelation estimate for the Oleson adjustment while df returns the degrees of freedom used to compute the original vector of t-statistics. If an estimate of rho isn't available, one can be computed on a vector of t-statistics using the ar1Solver function in bdots:

The p\_adjust function returns both adjusted p-values, which can be compared against the specified alpha (in this case, 0.05) along with an estimate of alphastar, a nominal alpha at which one can compare the original p-values:

```
> unadj_p
[1] 0.5000000 0.0849965 0.0381715 0.1601033 0.0247453 0.0013016
> adj_p
[1] 0.9201915 0.1564261 0.0702501 0.2946514 0.0455408 0.0023954
attr(,"alphastar")
[1] 0.027168
```

Here, for example, we see that the last two positions of unadj\_p have values less than alphastar, identifying them as significant; alternatively, we see these same two indices in adj\_p significant when compared to alpha = 0.05

#### 4. Discussion

The original implementation of bdots set out to address a narrow set of problems. Previous solutions beget new opportunities, however, and it is in this space that the second iteration of bdots has sought to expand. Since then, the interface between user and application has been significantly revamped, creating an intuitive, reproducible workflow that is able to quickly and simply address a broader range of problems. The underlying methodology has also been improved and expanded upon, offering tighter control of the family-wise error rate.

While significant improvements have been made, there is room for further expansion. The most obvious of these is the need to include support for non-parametric functions, the utility of which cannot be overstated. Not only would this alleviate the need for the researcher to specify in advance a functional form for the data, it would implicitly accommodate more heterogeneity of functional forms within a group. Along with this, the current implementation is also limited in the quality-of-fit statistics used in assessing performance.  $\mathbb{R}^2$  and the presence of autocorrelation are relevant to only a subset of the types of data that can be fit, and allowing users more flexibility in specifying this metric is an active goal for future work. In all, future directions of this package will be primarily focused on user interface, non-parametric functions, and greater flexibility in defining metrics for fitted objects.

# **Appendix**

# 5. Extended Formula Syntax

There are two special cases to consider when using the new bboot formula syntax. The first is the situation that arises in the case of multiple or nested groups, the second when considering the "difference of differences" between two gruops. We will describe these in the next section, though unfortunately the mouse data being used to provide illustration to the package use does not naturally accommodate either of these extensions. As such, we will begin by briefly introducing a toy data structure and then using it to illustrate the extensions of the syntax.

Formula Syntax for Nested Groups and the Difference of Differences. The formula syntax introduced in Section 3.2 is straightforward enough in the case in which we are interested in comparing two groups within a single category, as is the case when we compare two treatment groups, both within the Treatment column. As bdots now allows multiple groups to be fit at once, there may be situations in which we need more precision in specifying what exactly we wish to compare. Consider for example an artificial dataset that contains some outcome y for a collection of vehicles, consisting of eight distinct groups, nested in order of vehicle origin (foreign or domestic), vehicle class (car or truck), and vehicle color (red or blue). A table detailing the relationship of the groups is given in Table 2.

| Origin   | Class | Color |  |
|----------|-------|-------|--|
|          | car   | red   |  |
| foreign  |       | blue  |  |
| loreign  | truck | red   |  |
|          |       | blue  |  |
|          | car   | red   |  |
| domestic |       | blue  |  |
| domestic | truck | red   |  |
|          |       | blue  |  |

Table 2: Example of nested vehicle classes

Beginning with a simple case, suppose we want to investigate the difference in outcome between all foreign and domestic vehicles. Notionally, we would write

y 
$$\sim$$
 Origin(foreign, domestic)

Here, the name of the group variable Origin, followed by the values we are interested in comparing, domestic and foreign. Alternatively, if we wanted to limit our investigation to only foreign and domestic *trucks*, we would do this by including an extra term specifying the group and the desired value. In this case:

y 
$$\sim$$
 Origin(foreign, domestic) + Class(truck).

Similarly, to compare only foreign and domestic red trucks, we would add an additional term for color:

There are also instances in which we might be considered in the interaction between two groups. Although there is no native way to handle interactions in bdots, this can be done indirectly through the difference of differences method [5]. To illustrate, suppose we are interested in understanding how the color of the vehicle differentially impacts outcome based on the vehicle class. In such a case, we might look at the difference in outcome between red cars and red trucks and then compare this against the difference between blue cars and blue trucks. Any difference between these two differences would give information regarding the differential impact of color between each of the two classes. This is done in bdots using the diffs syntax in the formula:

$$diffs(y, Class(car, truck)) \sim Color(red, blue)$$

Here, the *outcome* that we are considering is the difference between vehicle classes, with the groups we are interested in comparing being color. This is helpful in remembering which term goes on the left hand side of the formula. If we wanted to limit this difference of differences investigation to only include domestic vehicles, we can do so by including an additional term:

$$diffs(y, Class(car, truck)) \sim Color(red, blue) + Origin(domestic).$$

As before, this can be further subset with an arbitrary number of nested groups.

# 6. Writing Custom Curve Functions

One of the most significant changes in the newest version of bdots is the ability to specify the parametric curve independently of the fitting function. Not only does this simplify a typical analysis, reducing all fitting operations to the single function bfit, it also provides users with a way to modify this function to meet

fit ← bfit(data = X, y = "y", time = "time", curveFun = f(...))

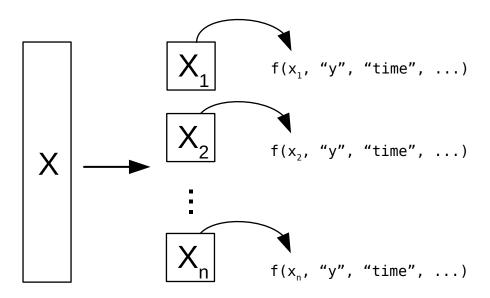


Figure 8: A call to the function bfit with data X and outcome and time variables "y" and "time". bfit splits the dataset X by subject/group and passes each individual data.frame into the curve function f(), along with time and outcome character vectors as well as any other arguments passed into '...'. In particular, the '...' argument allows the user to specify characteristics of the curve function that apply to all instances, as would be the case, for example, if curveFun = polynomial(degree = 5). Finally, each instance of f(...) returns both a formula for lmer::gnls as well as subject-specific starting parameters.

their own needs. In this section we will detail how the curve function is used in bdots and how users can write their own.

To begin, it is important to understand how bdots works internally. In the curve fitting steps using bfit, the data is split by subject and group, creating a list whereby each element is the set of all observations for a single subject (i.e., in a paired setting, an individual subject would have two separate elements in this list). Ultimately, the data in each element will be used to construct a set of estimated parameters and standard errors for each subject provided by the function nlme::gnls. Doing so requires both (1) a formula to which we fit the data and (2) starting parameter estimates. Providing the both of these is the role of the curve function. Figure 8 provides an illustration of this process.

We offer an explicit example of a curve function by constructing a curve function for fitting a straight line to the observed data. Curve functions require a minimum set of components, which we describe in enough detail to be suitable as a template. This function, along with its enumerated components, are given in Figure 9

```
linear <- function (dat, y, time, params = NULL, ...) {</pre>
     linearPars <- function(dat, y, time) {</pre>
          time <- dat[[time]]</pre>
          y <- dat[[y]]</pre>
(2)
          if (var(y) == 0) {
              return(NULL)
          mm <- (max(y) - min(y))/max(time)
          bb <- mean(y) - mm * mean(time)</pre>
          return(c(intercept = bb, slope = mm))
     }
     if (is.null(params)) {
(3)
          params <- linearPars(dat, y, time)</pre>
        (is.null(params)) {
(4)
          return(NULL)
     }
     y <- str2lang(y)</pre>
     time <- str2lang(time)</pre>
     ff <- bquote(.(y) ~ slope * .(time) + intercept)</pre>
     attr(ff, "parnames") <- names(params)</pre>
     return(list(formula = ff, params = params))
}
```

Figure 9: An example curve function with its constituent parts

1. The first part of the curve function is the formals, or the collection of arguments to be passed to the function. Each curve function should have an argument dat, which takes a data.frame as described in Figure 8, as well as arguments y and time which will take character strings indicating which columns of dat represent the outcome and time variables, respectively. Following this is the prespecified argument params = NULL, which is used by bdots during the refitting process, where the estimated starting parameters for the function are retrieved from outside the curve fitting function. During the initial fitting process, however, these parameters are generally constructed from the observed data. The only exception to this would be if the user decided to specify the initial starting parameters for all subjects when calling bfit, as in the call

Following the params argument, any other arguments specific to the curve function could be included. Although there are none for linear, an example of when they might be used would be for polynomial, in which the degree of the polynomial to be fit would be specified. Finally, there is the ... argument, which is needed to accommodate the passing of any additional arguments from bfit that are not a part of the curve function. Generally, this is not needed by the users but should be included nonetheless.

2. Also included in a curve function is a second function to estimate starting parameters from the observed data. While not strictly necessary that it be included within the curve function, it is useful for keeping the curve function self contained; parameter estimating functions defined outside of the curve function will otherwise still be used if they exist in the user's calling environment. For estimating starting parameters for a linear function we see here the function linearPars, taking as its arguments dat, y, and time. In this example, we check in case var(y) == 0, which causes issues for nlme::gnls, though in general it is a good idea to check for any other potential issues when estimating starting

parameters (negative values for a logistic, for example). In the event of a problem, we return NULL so that the subject is ignored by the fitter (this does not preempt attempting to manually refit with brefit). Importantly, this function returns a named vector, with the names of the parameters needing to match the parameter names in the formula given in (5).

- 3. As detailed in (1), with the argument params = NULL, the curve function should begin by estimating starting parameters. When different parameters are passed into params, this is skipped.
- 4. This is a quick check on the result from (3). Had linearPars returned a NULL object, the curve function itself should return a NULL object so that it is not passed to the fitter.
- 5. Finally, we have the most intricate part of the curve function, which is the construction of the formula object to be used by nlme::gnls. The first two lines of this use the base R function str2lang which turns a character string into an R language object (specifically, an unevaluated expression), making the names of the outcome and time variable suitable for a formula. The next line using the base R function bquote. The function quote returns its argument exactly as it was passed as an unevaluated expression; bquote does the same but first substituting any of its elements wrapped in .(). As it is written here, this will return a formula object using slope and intercept as is, replacing .(y) and .(time) with the appropriate names based on the character vectors provided in the function's formals. Finally, the names of the parameters are included as attributes to the formula object and the curve function concludes by returning a named list including both the formula object, as well as the named vector of parameters.

The object returned by the curve function is not limited to just providing starting parameters for observed data; the formula itself is converted by bdots into a function proper, capable of evaluating and bootstrapping values from that function in bboot. And so long as a user is able to recreate the steps provided, they should be able to construct any sort of function to be fit to their data, even if it is not included in bdots.

### References

- [1] Michael Seedorff, Jacob Oleson, and Bob McMurray. Detecting when timeseries differ: Using the bootstrapped differences of timeseries (bdots) to analyze visual world paradigm data (and more). *Journal of memory and language*, 102:55–67, 2018.
- [2] Jacob J Oleson, Joseph E Cavanaugh, Bob McMurray, and Grant Brown. Detecting time-specific differences between temporal nonlinear curves: Analyzing data from the visual world paradigm. Statistical methods in medical research, 26(6): 2708–2725, 2017.
- [3] José Pinheiro, Douglas Bates, and R Core Team. nlme: Linear and Nonlinear Mixed Effects Models, 2025. URL https://CRAN.R-project.org/package=nlme. R package version 3.1-167.
- [4] Mengshi Li, Dijie Liu, Dongyoul Lee, Somya Kapoor, Katherine N. Gibson-Corley, Thomas P. Quinn, Edwin A. Sagastume, Sarah L. Mott, Susan A. Walsh, Michael R. Acevedo, Frances L. Johnson, and Michael K. Schultz. Enhancing the efficacy of melanocortin 1 receptor-targeted radiotherapy by pharmacologically upregulating the receptor in metastatic melanoma. *Molecular Pharmaceutics*, 16(9):3904–3915, July 2019. ISSN 1543-8392. doi: 10.1021/acs.molpharmaceut.9b00512.
- [5] Bob McMurray, Jamie Klein-Packard, and J. Bruce Tomblin. A real-time mechanism underlying lexical deficits in developmental language disorder: Between-word inhibition. *Cognition*, 191:104000, oct 2019. doi: 10.1016/j.cognition.2019.06.012.