Review

Collin Nolte

May 3, 2022

Big picture stuff

Statistics? Data?

Distributions

Statistics we have known and loved

Data Reduction

Reducing entirety of dataset to meaningful summaries

Measures of Centrality:

- Mean
- Median
- Skew

Measures of Dispersion:

- Variance/standard deviation
- Quantiles
- IQR

Measures of Association:

- Correlation (Spearman, Pearson)
- Scatterplots

Data Reduction

Old Faithful Eruptions

eruptions

Types of Studies:

- Observational
 - + Case-control
 - + Longitudinal
 - + Retrospective
- Clinical

Types of Bias:

- Sample Bias
- Confounding
- Extrapolation

A statistic is any value that can be computed from a sample

This includes (but is not limited to): mean, median, variance, max/min, ratios, and differences

- A statistic is computed form a sample, which is randomly selected from a population
- As one sample may not be identical to another sample, we may assume that the derived statistics are not identical either
- If we are only able to collect a single sample, what are we able to say about the statistic derived? Can we find a range of likely values?

Randomness

Collin Nolte

The Central Limit Theorem has been backbone of most of what we have worked with this semester

It states that for a population X with mean μ and variance σ^2 , for any sample $\{X_1, \ldots, X_n\}$ of size *n*, the sample means follows an approximately normal distribution:

$$\overline{X} \sim N(\mu, \sigma^2/n)$$

- 1. Does not require that the population be normal (though it helps)
- 2. Works for statistics beyond the sample mean
- 3. Larger sample == more normal

Standard Deviation with n

Standard Deviation

Standard Error

Sample Mean Distribution

500 Samples of \overline{X}

Distribution of Statistic

The formal process of scientific investigation

- 1. Define the *null hypothesis* as a declarative, unambiguous statement
- 2. Collect observational or experimental data
- 3. Compare the results to what would have been expected based on the null hypothesis (statistical inference)
- 4. Either *reject* or *fail to reject* the null hypothesis based on the *strength of the evidence*

 $H_0: \mu = \mu_0$

Given a hypothesis, μ_0 , and an observed sample statistic, say, \overline{x} , we ask ourselves, "Is this difference due to chance, or is the null hypothesis incorrect?"

Frequently, we reduce this down to a single metric, the *p*-value:

 $p = P(\text{observed data} \mid H_0)$

p-values

Distribution under μ_0

Confidence Intervals

 $\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

In actuality, a null hypothesis is either true or false, and based on the data, we may reject or fail to reject this null. As a consequence, there are two ways in which we might make a mistake.

	True State of Nature		
Test Result	<i>H</i> ₀ True	H_0 False	
Fail to reject H_0	Correct	Incorrect	
	$(1 - \alpha)$	Type II Error (β)	
Reject <i>H</i> 0	Incorrect	Correct	
	Type I Error ($lpha$)	(1-eta)	

- Type I error = $P(\text{Reject } H_0 | H_0 \text{ true}) = \text{false alarm}$
- Type II error = $P(Fail \text{ to reject } H_0|H_A \text{ true}) = missed opportunity}$

If drug A doesn't work, I want to know

- "If H_0 is true, I want to be reasonably sure"
- "I can be more confident by collecting more evidence"
- "Evidence, in this case, would mean that my observed \overline{X} is extreme, given the null distribution based on H_0 "
- "I can set my threshold for how much evidence I would need by my choice of $\alpha,$ the Type I error rate"
- "Smaller values of α indicate that I need stronger evidence. This requires that I have a smaller *p*-value, with $p < \alpha$ "

If drug A does work, I want to know

- "If H_0 is false, I want to be sure to reject it"
- "This means I want to be more confident about my estimate of $\mu "$
- "This is difficult to do if there is a lot of variability. I can reduce the amount of variability by increasing my sample size"
- "This can be expensive, though, so I should know how many I need in order to be reasonably sure I have enough. This is called estimating my *power*, (1β) "
- "This will also depend on my *effect size*. A larger effect size requires less evidence, while a smaller effect size requires more"

Magnitude/Effect Size

Useful in testing for effect or differences between groups

 $H_0: \mu = \mu_0 \text{ or } H_0: \mu_A - \mu_B = 0$

May be paired or unpaired

Approximately normal as sample size increases

t-test

GENE:6234

Test

	Variable		
Population	+	_	Total
A	а	b	a+b
В	с	d	c+d
Total	a + c	b+d	N

- Independent or homogenous
- p-value does NOT indicate magnitude of relationship
- Alternatives: Fisher's exact test, binomial test
- Transmission Disequilibrium Test (TDT)

Describes a linear relationship

$$Y = X_1\beta_1 + X_2\beta_2 + \dots + X_n\beta_n + \epsilon$$

Where:

-
$$\epsilon \sim N(0,\sigma^2)$$

- β_i describes change in Y given change in X_i , everything else equal
- Collinearity
- Less is more

- Method of creating p new covariates out of p old covariates (linear combination)
- Ordered by amount of variability in the data
- New covariates are linearly independent
- Can serve as easy form of data reduction (i.e., keeping first two or three)

Principal Components

THE END