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Review

Last week we covered the case of simple linear regression

- X and Y are continuous variables

- Assume a linear relationship between them

- Y = β0 + β1X + ε

- β̂ ∼ N(β, var(β))

- β̂/sd(β̂) ∼ tn−1

- Model assumptions, checked with residual plots
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Multiple Regression

Previously, we had only considered the relationship between two variables,
which resulted in our fit being a line,

ŷ = β̂0 + β̂1X .

As we add more explanatory variables (X ), the dimension of our fit
increases. For example, with two explanatory variables, instead of a line,
we will have a square

ŷ = β̂0 + β̂1X1 + β̂2X2

Despite the ”squareness” of this new model, we still consider it a linear
function (and consequently, we are still doing linear regression)
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Dimensions
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Observed Data
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Fit
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Interpretation

Although we have increased our dimensions, everything in multiple
regression is analagous to what was done in simple regression, including
interpretation and model assumptions.

For example, given

ŷ = β̂0 + β̂1X1 + β̂2X2,

we would interpret β̂2 as a unit change in X2 results in a β̂2 change in ŷ ,
with the value of X1 being fixed
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Iris dataset

- Collected 50 flowers from each
of three speices of iris flowers

- Measurements taken on the
length and width of the petals
and sepals, taken in centimeters

- Speices include Iris setosa,
versicolor, and virginica

- Ignoring speices for now, we will
try to fit a model for predicting
sepal length, given sepal width
and petal dimensions
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R

> fit_iris <- lm(Sepal.Length ˜ Sepal.Width + Petal.Length + Petal.Width, data = iris)
> summary(fit_iris)

Call:
lm(formula = Sepal.Length ˜ Sepal.Width + Petal.Length + Petal.Width)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.8560 0.2508 7.40 0.0000000000099 ***
Sepal.Width 0.6508 0.0666 9.77 < 0.0000000000000002 ***
Petal.Length 0.7091 0.0567 12.50 < 0.0000000000000002 ***
Petal.Width -0.5565 0.1275 -4.36 0.0000241287569 ***
---

Residual standard error: 0.315 on 146 degrees of freedom
Multiple R-squared: 0.859, Adjusted R-squared: 0.856
F-statistic: 296 on 3 and 146 DF, p-value: <0.0000000000000002
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Iris dataset

The fitted model can be written as

Ŷ = 1.85 + 0.65X1 + 0.71X2 − 0.56X3

where Y = sepal length, and X1, X2, and X3 are sepal width, petal length,
and petal width, respectively

We could interpret as follows: with other X values being fixed, a
centimeter change in sepal width leads to a 0.65 centimeter increase in
sepal length. Similarly, a centimeter change in petal width corresponds to
a -0.56 centimeter change in sepal length
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Types of covariates

Until this point, we have only considered covariates that are continuous in
nature, such as petal length, or muscle mass

Often, however, we might wish to include a categorical variable in our
regression model, for example, sex or treatment type. In doing so, we are
able to consider regression values in different groups

We will consider an examle in which odontoblasts (cells responsible for
tooth growth) were measured in 60 guinea pigs, each receiving one of
three doses of vitamin C (0.5, 1, 2 mg/day) by one of two methods of
delivery (orange juice or absorbic acid)

Categorical variables are often coded with indicators, with a value of 1 for
one group and a value of 0 for others
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Guinea pigs

Here, we have the fitted model for the guniea pig data

ŷ = 9.27 + 9.76× Dose− 3.7× AbsorbicAcid

We see from this that, within each group, a milligram increase in the dose
of vitamin C resulted in a 9.76 micron increase in the length of
odonotoblasts

The categorical variable in this case has the value 1 for guinea pigs
receiving absorbic acid, indicating that, as a whole, this group had
odontoblasts that were 3.7 microns shorter than the orange juice group.

For a vitamin C dose at 1mg/day, we would then predict

ŷ = 9.27 + 9.76 = 19.03 microns

ŷ = 9.27 + 9.76− 3.7 = 15.33 microns

for guinea pigs with orange juice and absorbic acid, respectively
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Guinea pigs
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Control Variables

We will also often be interested in including control variables in our model,
which may not be variables of interest, but seek to control confounding in
our model

Put another way, our outcome variable has some total amount of variance
(SSTotal), and we include covariates in order to ”account” for this
variance. The more variance explained by a covariate, the more likely it is
to have a relationship with the outcome. Including control variables is a
productive way to mop up this excess variance or, more critically, control
for confounding

For this example, we will consider data extracted from the 1974 Motor
Trend magazine, measuring fuel consumption along with 10 additional
aspect of vehicle design for 32 cars. We are interested in investigating the
relationship between mpg and vehicle weight
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mpg vs weight

Call:
lm(formula = mpg ˜ wt, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.543 -2.365 -0.125 1.410 6.873

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.285 1.878 19.86 < 0.0000000000000002 ***
wt -5.344 0.559 -9.56 0.00000000013 ***
---

Residual standard error: 3.05 on 30 degrees of freedom
Multiple R-squared: 0.753, Adjusted R-squared: 0.745
F-statistic: 91.4 on 1 and 30 DF, p-value: 0.000000000129
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mpg vs weight + controls

Call:
lm(formula = mpg ˜ wt + disp + carb, data = mtcars)

Residuals:
Min 1Q Median 3Q Max

-4.074 -1.839 -0.352 1.310 5.684

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 35.49063 2.01903 17.58 <0.0000000000000002 ***
wt -2.87249 1.09765 -2.62 0.014 *
disp -0.01697 0.00853 -1.99 0.056 .
carb -0.79718 0.33286 -2.39 0.024 *
---

Residual standard error: 2.7 on 28 degrees of freedom
Multiple R-squared: 0.818, Adjusted R-squared: 0.799
F-statistic: 42 on 3 and 28 DF, p-value: 0.00000000017
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Controlling variables

Including displacement and the number of carburetors decreased the effect
that weight had on vehicle mileage, while each of these in turn had effects
in the same direction (that is, an increase in either resulted in negative
impact on mpg)

This makes some sense: we might imagine that larger vehicles (which
weigh more) would also have larger engine displacement and more
carburetors

It also allows us to compare vehicles which may have similar weight, but
differ in other aspects. By accounting for these in our model, we are able
to get a more accurate idea of what the true impact of weight might be on
mileage
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Inference

For each of the models just considered, there were n = 32 total
observations. When our data is written as a matrix, this indicates that we
have 32 total rows

The number of covariates in our model, then, makes up the number of
columns, designated p. In the first model, with only weight, we had p = 1.
After adding displacement and the number of carburetors, we had p = 3.

The relationship of n to p is of critical importance: the larger n is relative
to p, the better a fit (and the smaller the variance) we will have in our
model. For typical regression, we will always require that n > p, though
there are special methods for handling the p > n case, which is common
when performing regression on genetic arrays
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Inference

The most immediate consequence of the relation of n to p comes in the
t-statistic generated by the parameter estimates. In the simple regression
case, we indicated that

β̂

sd(β̂)
∼ tn−1

However, in the case of multiple regression, it follows that

β̂

sd(β̂)
∼ tn−p

Recall that as n − p gets larger, the variance of this distribution gets
smaller. As n is usually fixed, we are limited by the number of covariates
we can include. It’s worth asking, then, if the addition of an extra
covariate is worth reducing the value of n − p
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R2

Last week, we introduced the concept of R2, giving information on how
much variance is captured in the model

R2 = 1− SSResidual
SSTotal

SSTotal =
n∑

i=1

(yi − y)2, SSResidual =
n∑

i=1

(yi − ŷi )
2

As we add more and more variables, ŷi will never get further away from yi .
It can either make our estimate much better, or more or less the same, but
never worse.

Only considering R2, it will always appear that adding more variables is
better
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Adjusted R2

We might then consider a value known as adjusted R2, or R2
adj , given

R2
adj = 1− (1− R2)

n − 1

n − p − 1

The algebra doesn’t work out nicely in comparing to the original R2, but
we can illustrate with an example: suppose n = 10, and p = {1, 2, 3}

10− 1

10− 1− 1
= 1.125,

10− 1

10− 2− 1
= 1.285,

10− 1

10− 3− 1
= 1.5

From p = 1 to p = 2, this inflation factor increases by 0.16. From p = 2
to p = 3, by 0.21. Each additional covariate increases the inflation by a
marginally greater amount. In other words, the more covariates we already
have, the greater the justification we need to add another
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Multicollinearity

As we increase the number of covariates in our model, there are a number
of potential pitfalls to be on the lookout for, the most significant of which
is the issue of multicollinearity

In the simplest case, we say that two covariates X1 and X2 are (perfectly)
collinear if there is an exact linear relationship between them, i.e., if

X1 = a + bX2

There are a number of ways to interpret how this can cause issues, and we
will consider a few in detail. Although the interpretations will be slightly
different, the underlying phenomenon is the same in each case
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Women muscle mass

Last time we considered a dataset comparing age to muscle mass in
women aged 40 to 79, giving us the linear model

ŷ = 156.35− 1.19X1

Now suppose that we included a variable X2, which measured a woman’s
age in days (with 1 year = 365 days), and consider the model

ŷ = β̂0 + β̂1X1 + β̂2X2

As mentioned previously, we interpret the value of β̂2 to be “for every
additional day in age, muscle mass changes by β̂2, everything else being
fixed.”

Of course, in this situation, it would be impossible for X2 to change
without X1 changing, as X1 = 365 · X2
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Some linear algebra

Behind the scenes, these problems are solved with linear algebra. Suppose
that we have two covariates, where X2 = 2X1, and we wish to estimate β1
and β2

6 = 3β1 + 6β2

− 4 = 2β1 + 4β2

2 = β1 + 2β2

Here, there are an infinite number of solutions: β1 = 0 and β2 = 1 would
be one, and β1 = 1 and β2 = 1/2 would be another; and while all would
be able to estimate Y the same, we have no idea which of these is
“correct”. This is problematic when we are specifically interested in
knowing the true value of β
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Hidden extrapolation

Consider a statement we made last lecture: it’s important to not attempt
to make predictions outside of the range of X . When X was a line, this
was simple; we only had to consider the range of X .

In the case of multiple variables, the issue is a bit trickier. Now let’s
consider a more realistic case in which X1 and X2 are no longer multiples
of each other, but are instead highly correlated.

For example, suppose a study collected both systolic and diastolic blood
pressure. We might expect these measures to be highly correlated
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Hidden Extrapolation
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Hidden Extrapolation
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Hidden Extrapolation
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Hidden Extrapolation
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Hidden Extrapolation

From this, there are two primary things to keep in mind:

1. Only considering the ranges of the X values respectively, we might
consider it safe to predict, say, the outcome for an individual with
diastolic BP of 80 and Systolic of 200 – however, we don’t actually
have any observations that fall in this range

2. More broadly, we see that what is obstensibly a box is also like a line.
In other words, “on paper” we have increase our dimension from one
to two, but in reality, it’s more akin to something like one and a half.
This idea will be especially relevant next week
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A few notes

Nearly all of what we discussed last week in terms of residuals and model
assumptions is true in the multivariate case

As one might imagine, even the cases discussed here have generalizations.
For example, logistic regression is a case in which the outcome Y is binary
(such as disease status), and the regression coefficients tell us about the
change in odds given changes in the covariates

One may even change the assumption on error terms, and assume different
underlying distributions. This falls under the category of generalized linear
models

Lastly, there are cases addressing high-dimensional situations, where the
number of covariates exceeds the number of outcomes. This is known as
penalized regression
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