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Review

Last week, we considered randomness and distributions

- A distribution describes relationship between “events” and
probabilities

- Sampling is a random process

- Central Limit Theorem (CLT) tells us that sample mean follows a
normal distribution

X ∼ N

(
µ,
σ2

n

)
Specifically, this tells us that the sampling distribution of X has an
expected value E (X ) = µ and standard deviation σ̂ = σ/

√
n
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The Statistical Framework

Population
(Parameter)

Sample
(Statistic)

Inference Study Design
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Distribution→ Population→ Sample
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Samples are Random (n = 20)

Each random sample will have a different (random) sample mean, x
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Review of Sampling Distribution

Recall last time that, as a consequence of the CLT, we made the claim
that by only collecting a single sample from a population, we would be
able to approximate its distribution and leverage this to make further
claims regarding our statistic

Specifically, we noted that our statistic follows a normal distribution,
centered around the true population mean, with an estimate of variability
based on sample size

Our intention here is to construct a suitable interval of values around the
sample mean that contains the true mean with some specified probability
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Normal Distribution

A quick reminder on some properties of the normal distribution
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Simulation and Statistics

In some sense, accepting that a single sample yielding a single estimate of
the mean and standard deviation can follow a particular distribution
demands a leap of faith. Let’s try and make this leap shorter

To do so, we will approach this same problem from two different ways:
through the use of simulation and an application of the CLT (admittedly,
also via simulation). Arriving at the same conclusions in each should give
us confidence that the methods are equivalent

This is especially handy, considering that only one of them can be used for
practical purposes
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Notation

We will have some unfortunately overlapping notation, so this slide will
serve to be a reference when reviewing

1. µ = population mean and σ = population s.d.

2. x i will be sample mean from ith sample

3. σ̂x will be the standard devition of 1,000 samples of x i

4. σ̂n will be the standard deviation from a single sample of size n
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Simulation

For our simluation, we will follow these steps

1. Start with a population with mean µ = 0 and standard deviation
σ2 = 1

2. We will collect 1,000 samples of size n = 25 and for each one,
compute the sample mean x i

3. We will plot all 1,000 samples of x i , creating a histogram, allowing us
to visualize the resulting distribution

4. We will confirm that the expected value is E (X ) = µ = 1 and that
the standard deviation is σ̂x = σ/

√
n = 0.2

5. Finally, we will look at the interval x ± σ̂x and confirm that it
contains about 68% of the total observations

Collin Nolte GENE:6234 February 01, 2022 10 / 20



Simulation

Under CLT, the distribution of X should have mean 0, standard deviation
of 0.2, with 68.2% of observations between X ± σ̂

- Average value of sample is
x = −0.00622

- Standard deviation of
sample is σ̂x = 0.19104

- Interval x ± σ̂x contains
68.9% of total observations
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Statistics

For our verification with statistics, we will do something slightly different:

1. Start with the same population with µ = 0 and σ2 = 1

2. We will collect 10 samples of size n = 25, and for each one, we will
compute the sample mean X and standard error σ̂

3. For each sample, we will look at the interval x ± σ̂ and compare it
with what we saw in the simulation
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Statistics

Here, 60% of the constructed confidence intervals contain the true
population mean, µ = 0

Sample xn σ̂n xn ± σ̂n/
√
n

1 0.28 0.96 (0.09, 0.47)
2 0.52 1.04 (0.31, 0.72)
3 0.03 1.32 (-0.24, 0.29)
4 -0.55 1.05 (-0.76, -0.34)
5 0.13 0.75 (-0.02, 0.28)
6 -0.06 0.94 (-0.25, 0.12)
7 0.01 1.1 (-0.21, 0.23)
8 -0.13 0.98 (-0.32, 0.07)
9 -0.09 1.36 (-0.36, 0.19)

10 -0.22 0.96 (-0.41, -0.03)

Average -0.008 1.04 (-0.217, 0.201)
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What does this mean?

The full simulation portion above allowed us to actually perform iterations
of this random process – by carrying this process out and examining the
results, we were able to confirm empirically that the observed distribution
was as expected

The “statistics“ portion enabled us to really zoom in on ten of the samples
collected to see what would happen if, using that sample alone, we made
an estimate of mean, along with an interval about that mean

While the individual estimates and intervals themselves showed some
variability, on average, they agreed with what was found in the full
simulation

Collin Nolte GENE:6234 February 01, 2022 14 / 20



Intervals

For each of the methods investigated, we concerned ourselves with the
construction of the interval x ± σ̂ which, according to properties of a
normal distribution, should contain roughly 68.2% of the total observations

This bore out in the simulation, with the constructed interval containing
68.9% of the total simulated sample means

And in the second portion, we nearly found this, with 60% of the
constructed intervals containing the true mean µ = 0. Had we examined
more than ten samples, this proportion would have become increasingly
closer to 68.2%

As it turns out, the process behind both of these constructions is identical
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Intervals, cont.

Let’s limit our attention for now on the ten intervals we constructed,
where 60% of them did not contain the true population mean. This value
is known as the coverage probability

Critically, the coverage probability is associated with the random process
of generating intervals, not the probability that a particular interval
contains the true parameter value

In other words, a particular interval either does or does not contain the
true parameter value. We don’t know, and we have no way of knowing for
sure. We can only make probablistic statements about the process itself
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Coverage Probability

The coverage probability is denoted 1− α, where α ∈ (0, 1). Likewise, α
represents the probability that an interval of a particular size will not
contain the true value. The values z1−α/2 and zα/2 are known as critical
points
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Converage Probability for N(0, 1)
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Normal Distribution Intervals
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Review

1. Sampling distribution as random process

2. Coverage probability describes probability that a process of
constructing intervals contains true parameter

3. Wider intervals have higher coverage probability but are also less
informative
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