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Plan

Here’s what to expect today

1. Determine relationship between X and Y

- y = mx + b
- What is the “best” line?
- Slope and intercept interpretation

2. Rules and assumptions

- What can we do with model?
- What can’t we do?

3. Residuals

- Use to check model diagnostics
- Verify assumptions
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Introduction

Previously in the course, we considered scatterplots, depicting the
relationship between two continuous variables, along with the correlation,
indicating the linear relationship between the two, with |r | ≤ 1

Today we will consider defining a functional linear relationship between
two continuous variables, known as simple linear regression.

Will will designate these variables Y , the response or dependent variable,
and X , the explanatory or independent variable. Although this suggests a
causal relationship, we will limit ourselves to interpreting it as a functional
relationship for now
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Linear Function (temperature)

F = 1.8C + 32
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Questions

Typically, we step are attempting to answer the following questions with
the use of simple linear regression:

- Is there a linear relationship between X and Y ?

- How does one variable change in response to a change in another?

- If an association exists, can it be exploited to predict the value of one
variable, based on the assumed value of another?
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Examples

- X = an individual’s metacarpal bone length
Y = individual’s height

- X = time a person with high cholesterol is on the drug Lipitor
Y = change in person’s cholesterol level over time

- X = nitrate emissions rate from industries in a region
Y = nitrate concentration for rainfall in the region
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Simple Linear Regression

As the name suggests, simple linear regression involves describing the
relationship between X and Y with a straight line of the form

Y = β0 + β1X + ε

where β0 indicates the intercept for the line, and β1 the slope

As we should rarely expect that our data will fit perfectly on a straight line,
we account for this error with the ε term, taken to be a random variable

The usual assumption we have is ε ∼ N(0, σ2). In particular, note that
E (ε) = 0, so that

E (Y ) = E (β0 + β1X + ε)

= E (β0 + β1X ) + E (ε)

= β0 + β1X
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Determining a line

We will start with our n observations, represented by pairs of data
(x1, y1), (x2, y2), . . . , (xn, yn), for which a scatterplot can be generated

For each data point (xi , yi ), let ŷi denote the corresponding point of our
(currently hypothetical) best line

An estimate of the error term we mentioned previously can be described as
ei = (ŷi − yi ), representing the vertical distance between our observed
point and the corresponding point on the line. This is known as our
residual
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Determining a line
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Determining a line
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Least-Squares Method

The least-squares method for determing our line is the one in which the
quantity

∑n
i=1(ŷi − yi )

2 is minimized, where

Ŷ = b0 + b1X

where b1 = r
(
sy
sx

)
and b0 = Y − b1X , where r = corr(X ,Y ), and sx and

sy are the standard deviations for X and Y , respectively

From this, we note two things:

1. The intercept term, b0, is understood as the mean value of Y when
X = 0

2. The slope of the line, b1, represents the change in Y for a one-unit
increase in X
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Example - Muscle Mass

It is expected that an individual’s muscle mass will descrease with age

To investigate this relationship in women, a nutritionist randomly sampled
15 women from each 10 year age group, beginning with age 40 and ending
with age 79

We will start by considering a scatter plot of the data
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Example - Muscle Mass
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Example - Muscle Mass

Summary Statistics:

x = 59.983, sx = 11.979

y = 84.967, sy = 16.209

r = −0.866

The least squares line is given by ŷ = b0 + b1x , where

b1 = r

(
sy
sx

)
= −0.866

(
16.209

11.979

)
= −1.19

and

b0 = y − b1x = 84.967− (−1.19)× 59.983 = 156.35
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Example - Muscle Mass
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Example - Muscle Mass

ŷ = 156.35− 1.19x

Conclusions:

1. For every one year increase in age (x), we would expect an decrease
of about 1.2 pounds in muscle mass

2. When x = 0, the average muscle mass of a woman is expected to be
around 156 lbs - Note that this doesn’t make any sense. We can only
interpret values that fall within the range of our model (40-80yrs)

3. For a woman who is 50 years old, we could predict her muscle mass
to be

ŷ = 156.35− 1.19× 50 = 96.85 lbs
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Inference and Simple Linear Regression

In most applications, when fitting a line with regression, our goal is to
perform some kind of inference about the underlying relationship in the
population

Our assumed model is of the form

y = β0 + β1x + ε

which is approximated with the least-squares line

ŷ = b0 + b1x

The central limit theorem applies to the parameter estimates, with
bi ∼ N(βi , var(βi )). From this, we can construct our t distribution, with

b − β
sd(b)

∼ tn−1
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Inference and Simple Linear Regression

Population
y = β0 + β1x + ε

Sample
ŷ = b0 + b1x

Study Design Inference
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R

> fit <- lm(mass ˜ age, data = muscle)
> summary(fit)

Call:
lm(formula = mass ˜ age, data = muscle)

Residuals:
Min 1Q Median 3Q Max

-16.137 -6.197 -0.597 6.761 23.473

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 156.3466 5.5123 28.4 <0.0000000000000002 ***
age -1.1900 0.0902 -13.2 <0.0000000000000002 ***
---

Residual standard error: 8.17 on 58 degrees of freedom
Multiple R-squared: 0.75, Adjusted R-squared: 0.746
F-statistic: 174 on 1 and 58 DF, p-value: <0.0000000000000002
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On scaling X

b1 = r

(
sy
sx

)
Critically, we see that the slope is intimately associated with the
correlation between X and Y , but scaled with the ratio sy/sx to preserve
the interpretation of units

A very common technique involves scaling the value of X , with

x̃ =
x − x

sd(x)

so that E (x̃) = 0 var(x̃) = 1. With this, we have a new value for the slope,

b̃1 = rsy

indicating that a standard deviation change in X results in a b̃1 change in
Y
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On scaling X

> fit <- lm(mass ˜ scale(age, scale = TRUE), data = muscle)
> summary(fit)

Call:
lm(formula = mass ˜ scale(age, scale = TRUE), data = muscle)

Residuals:
Min 1Q Median 3Q Max

-16.137 -6.197 -0.597 6.761 23.473

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 84.97 1.06 80.5 <0.0000000000000002
scale(age, scale = TRUE) -14.04 1.06 -13.2 <0.0000000000000002

---

Residual standard error: 8.17 on 58 degrees of freedom
Multiple R-squared: 0.75, Adjusted R-squared: 0.746
F-statistic: 174 on 1 and 58 DF, p-value: <0.0000000000000002
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R2

A common metric used in regression, especially when considering
predictive quality is the coefficient of determination, or R2

Two values that are relevant here are the total sum of squares and the
residual sum of squares,

SSTotal =
n∑

i=1

(yi − y)2, SSResidual =
n∑

i=1

(yi − ŷi )
2

We then define R2 as

R2 = 1− SSResidual
SSTotal
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R2

If the linear association (correlation) between x and y is small, b1 will also
be small, and ŷ ≈ y and SSTotal ≈ SSResidual

R2 = 1− SSResidual
SSTotal

SSTotal =
n∑

i=1

(yi − y)2, SSResidual =
n∑

i=1

(yi − ŷi )
2

ŷ = b0 + b1x , b1 = r

(
sy
sx

)
, b0 = y − b1x
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R2
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Residuals

As we noted previously, our assumed model has the form

y = β0 + β1x + ε

where we assumed that ε ∼ N(0, σ2). For each observation fit with the
model, we have an estimate of this error term, known as the residual,

ei = yi − (b0 + b1xi ) = yi − ŷi

The validity of our linear model is built on a collection of assumptions,
which can be investigated by examining the set of model residuals ei

GENE:6234 April 6, 2021 25 / 33



Model Assumptions and Diagnostics

The assumptions in regression are:

- εi ∼ N(0, σ2)

- The values of ε are all independent, so that εi does not depend on εj

- We assume that the independent variable X is linearly related to the
dependent variable Y

- The variability of ε does not change as X changes; this is known as
homoscedasticity
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Assumptions - Residuals

We can examine the first assumption by plotting the residuals from our
muscle mass model: we should expect that for every value of x , the
residuals are centered around 0
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Assumptions - Residuals

When X and Y do not have a linear relationship, it will often be reflected
in the residual plot
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Assumptions - Residuals

We will see a similar issue if the value of the residuals does depend on X .
This violates the assumption of homoscedasticity:
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Remarks on Assumptions

While there are qualtiative tools available to precisely measure these
deviances, there are no hard and fast rules for the model assumptions

Whether or not the model remains valid is to some degree subjective –
however, being aware of where the assumptions fail may give insight into a
problem

For example, if the residuals suggest that there is not a linear relationship,
perhaps transformaing the variables or help, or possibly important variables
are missing from the model
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Review - Model

1. Investigating linear relationship between X and Y : Y = β0 + β1X + ε

2. Choose values of β0 and β1 to minimizie
∑n

i=1(yi − ŷi )
2 (residual

sum of squares)

3. While this model can be used for prediction, we must stay within
range of observed values – intercept value only makes sense if 0 is
included in the range of X

4. Estimates of β follow a t distribution

5. R2 = 1− SSTotal
SSResidual

used to determine proportion of variance explained
in the model
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Review - Residuals

1. Assume that errors are independent of X and each other, with
ε ∼ N(0, σ2)

2. We can often check model assumptions by plotting residuals against
X

3. If X and Y do not have a linear relationship, this will be reflected in
residual plot. Similarly if variance in ε changes with X

4. Model assumptions often don’t have hard and fast rules – context and
judgement is necessary
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