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Population Stratification

Last week we considered the transmission disequilibrium test and made
note that it controlled for effects of population stratification

As this will come up again in future lectures, it’s worth briefly covering
now. We’ll start with a working definition

Population stratification is the presence of systematic differences in allele
frequencies between subpopulations in a population as a results of
non-random mating between individuals. As such, it is an important
confounding variable in genome association studies
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Here, we will consider two populations X and Y that together make up a
larger population, Z

Population X Population Y
AA 70 AA 30
BB 10 BB 40
AB 20 AB 30

Population Z

AA 100

BB 50

AB 50

Because of Population X , A has a much higher allele frequency than B in
the general population
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The primary consequence of the higher allele frequency lies in the relative
portions of homozygous parents, either AA or BB

Population Z

AA 100

BB 50

AB 50

Non-transmitted
Transmitted A B Total

A 100 b
B c 50

Total 200

In disease association studies, we control for this confounding by only
considering the offspring of those parents who are heterozygous
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If there is no association between the disease and allele, we should expect
that of the heterozygous parents, 50% would transmit A while 50% would
transmit B

Population Z

AA 100

BB 50

AB 50

Non-transmitted
Transmitted A B Total

A 100 25
B 25 50

Total 200

The p-value for this table using McNemar’s test is p = 0.887
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If, on the other hand, there is an association between disease status and,
say, allele A, we would expect over-representation of A passed from
heterozygous parents

Population Z

AA 100

BB 50

AB 50

Non-transmitted
Transmitted A B Total

A 100 40
B 10 50

Total 200

The p-value for this table using McNemar’s test is p = 0.00004
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Review

Last week, we considered the χ2 test, Fisher’s Exact Test, and the exact
binomial test for analyzing association of groups in 2× 2 tables

Critically, we understand that these were binary tests of association, telling
us nothing about the magnitude of association (or lack of association)
between groups

Today, we will focus on methods for determining this magnitude
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Odds

Odds are expressed as a proportion of successes to failures. For example,
using a fair six sided die, we would say that the odds of rolling a six are 1
to 5 (one six to five not-sixes), or 0.2.

We could equally say the odds of not rolling a six to rolling a six are 5 to
1, or 5.0. In other words, depending on what is classified as success as
failure in a binary outcome gives us two different odds that are inverses of
each other

What we may be interested in comparing is the odds of some outcome
between two populations
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Odds Ratio

Side Effects
Treatment Status Yes No Total

Control 10 40 50

Treatment 30 20 50

Total 40 60 100

For the control group, the odds of having side effects are 10 to 40, or 0.25.
Similarly, the odds of having side effects for the treatment group is 30 to
20, or 1.5

From here, two equivalent statements can be made:
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Side Effects
Treatment Status Yes No Total Odds

Control 10 40 50 0.25

Treatment 30 20 50 1.5

Total 40 60 100

We might consider how the odds between Control and Treatment groups
are related, and from here, two equivalent statements can be made:

Comparing the odds of side effects from treatment to control, we have an
odds ratio of 1.5/.25 = 6. That is, the odds of having side effects are 6
times higher in the treatment group, compared to control.

Equivalently, we also could have described the odds from control to
treatment as .25/1.5 = 0.1667
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Interpretation of Odds Ratio

Typically, we compute the odds in a standard way, which divides the odds
of the first row by the odds of the second. Of course, which group is on
which line is arbitrary

When 1 < θ <∞, the odds of the first response are θ times higher in the
first row than the second. When 0 < θ < 1, the odds are (1/θ) higher in
the second row than the first. θ = 1 if and only if the two groups are
independent

The odds ratio remains the same if the columns and rows of the table are
switched: in other words, θ is not determined by which margins (if any)
are assumed to be fixed

OR = θ̂ =
a/b

c/d
=

ad

bc
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Odds Ratio Test Statistic

Having an estimate for the odds ratio is nice, but otherwise meaningless
without having a sense of the variability in this estimate. In other words, it
would be convenient if we could compute a confidence interval as well.

Under the null H0 : θ = 1, we see that the odds ratio is just as likely to fall
in the interval (0, 1] as it is [1,∞). Consequently, the distribution of θ̂ is
hardly normal. It can be shown that this is remedied with a log
transformation:

log θ̂ ∼ N(θ, σ̂(log θ̂))

where

σ̂(log θ̂) =

(
1

a
+

1

b
+

1

c
+

1

d

)1/2
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Odds Ratio and CLT

Given that log θ̂ is approximately normally distributed, we can compute the
same style of confidence intervals that we used in the CLT. With zα/2
being our critical value, we can construct a (1−α)% confidence interval as

log θ̂ ± zα/2(σ̂(log θ̂))

Taking the exponential of the endpoints of this interval, we end up with a
confidence interval for the odds ratio

exp
(

log θ̂ ± zα/2(σ̂(log θ̂))
)

= exp
(

log θ̂
)

exp
(
±zα/2(σ̂(log θ̂))

)
= θ̂ exp

(
±zα/2(σ̂(log θ̂))

)
This estimate tends to be slightly conservative, leading to the possibility of
incorrectly rejecting a null hypothesis
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95 % CI for Odds Ratio

Side Effects
Treatment Status Yes No Total Odds

Control 10 40 50 0.25

Treatment 30 20 50 1.5

Total 40 60 100

θ̂ = 6, log θ̂ = 1.792, zα/2 = 1.96

σ̂(log θ̂) =

(
1

10
+

1

40
+

1

30
+

1

20

)1/2

= 0.456

Then

log θ̂ ± zα/2(σ̂(log θ̂)) = (0.8972, 2.6864)

θ̂ exp
(
±zα/2(σ̂(log θ̂))

)
= (2.4526, 14.6783)
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R

A slightly more sophisticated version of this test is returned by the
fisher.test in R

> fisher.test(mm)

Fisher’s Exact Test for Count Data

data: mm
p-value = 0.000083
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
2.2658 16.3909

sample estimates:
odds ratio

5.8813
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Relative Risk

A more meaningful statistic for clinicians is often the relative risk, which
expresses a ratio of probabilities of outcomes between populations based
on exposure. For example, we might ask, “What is the proportional
increase in heart disease for smokers compared to non-smokers?”

Caution needs to be used here as we are asking a question about
conditional probabilities. Computing this directly requires knowing the
probability of an outcome in general, which we may or may not have,
depending on the study
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RR

Variable
Population + − Total

A a b a + b
B c d c + d

Total a + c b + d N

π1|1 = {Probability of ’+’ outcome, given Population A} =
a

a + b

π1|2 = {Probability of ’+’ outcome, given Population B} =
c

c + d

RR =
π1|1

π1|2
=

a(c + d)

c(a + b)
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RR Valid

A report published in 1988 summarizes results of a Harvard Medical
School clinical trial determining effectiveness of aspiring in preventing
heart attacks in middle-aged male physicians

Myocardial Infarction
Treatment Status Attack No Attack

Placebo 189 10,845

Asprin 104 10,933

Here, the row totals were fixed by study design. As the column values
were not determined a priori, these observations reflect the probabilities of
an outcome in the study
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RR Valid

Myocardial Infarction
Treatment Status Attack No Attack

Placebo 189 10,845

Asprin 104 10,933

π1|1 = {Probability of ’+’ outcome, given Population A} =
189

11034

π1|2 = {Probability of ’+’ outcome, given Population B} =
104

11037

RR =
π1|1

π1|2
=

a(c + d)

c(a + b)
=

189 · 11037

104 · 11039
= 1.812
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RR Not Valid

A report published in 1950 summarizes the results of a case-control study
between 20 London hospitals investigating relationship between cigarette
smoking and cancer. The study involved 1,418 patients, matching 709
cases with lung cancer against 709 controls without lung cancer on the
basis of gender and age

Lung Cancer
Smoking Status Present Not Present

Smoker 688 650

Non-Smoker 21 59

Total 709 709

Now it is the totals for the outcome that we determined a priori. From
this data, it would be impossible to determine the actual prevelance of
lung cancer within the population. Without these probabilities, relative
risk cannot be computed
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Odds Ratio vs Relative Risk

Variable
Population + − Total

A a b a + b
B c d c + d

Total a + c b + d N

Fortunately, the odds ratio can be used as an approximation to the relative
risk when incidence of the disease is close to zero (i.e., rare diseases). In
such cases, relative to b and d , a and c will be small:

RR =
a(c + d)

c(a + b)
≈ ad

bc
= OR
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Comparison

Consider this in the Myocardial Infarction study, where the incidence of a
heart attack is relatively small

Myocardial Infarction
Treatment Status Attack No Attack

Placebo 189 10,845

Asprin 104 10,933

RR =
a(c + d)

c(a + b)
= 1.812

OR =
ad

bc
= 1.832
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Comparison

Returning to the smoking example, as the true incidence of lung cancer is
known to be relatively small, the odds ratio can still provide a rough
indication of relative risk

Lung Cancer
Smoking Status Present Not Present

Smoker 688 650

Non-Smoker 21 59

Total 709 709

OR =
688 · 59

21 · 650
= 2.974
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