### Variance and Standard Deviation

Grinnell College

September 10, 2025

#### Review

Last time we ended with review of numerical summaries

- Measures of center
- Measures of dispersion

In particular, we considered two varieties: order and moment statistics

#### Variance

Today, we are going to take a closer look at variance:

- How is it defined
- Relationship between variance and standard deviation
- What is it used for?
  - Dispersion
  - Uncertainty
  - Prediction

Most impactfully, the idea of variance is going to help us quantify statements such as, "this is the *best guess* we have"

### **Definitions**

$$\sigma^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$





Here n=5,  $\overline{x}=5.19$  and  $\hat{\sigma}=0.81$ 



 Grinnell College
 STA-209
 September 10, 2025
 7 / 14

Here n=5,  $\overline{x}=5.19$  and  $\hat{\sigma}=0.81$ 



 Grinnell College
 STA-209
 September 10, 2025
 8 / 14

Note that it is not impacted by the number of observations. Here n=10,  $\overline{x}=5.15$  and  $\hat{\sigma}=0.83$ 



### Outlier

Now n=11,  $\overline{x}=5.6$  and  $\hat{\sigma}=1.9$ 



 Grinnell College
 STA-209
 September 10, 2025
 10 / 14

# Dispersion

Both of these have  $\mu = 100$ 



 Grinnell College
 STA-209
 September 10, 2025
 11 / 14

## Better Centers?



### Better Centers?



## Main Takeaways

Variance and standard deviation are metrics of dispersion
Tell us how far things are from mean
Identify outliers
Allows us to see uncertainty based on a point estimate
Allows us to compare different centers to see if they offer improvement
we will never have to do by hand