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Introduction

library(ggplot2)
library(dplyr)

theme_set(theme_bw())

## Better histograms
gh <- function(bins = 8) {

geom_histogram(color = 'black', fill = 'gray80', bins = bins)
}

## Bootstrap Function
bootstrap <- function(x, statistic, n = 1000L) {

bs <- replicate(n, {
sb <- sample(x, replace = TRUE)
statistic(sb)

})
data.frame(Sample = seq_len(n),

Statistic = bs)
}

## Standard Error
se <- function(x) sd(x) / sqrt(length(x))

## College dataset
college <- read.csv("https://collinn.github.io/data/college2019.csv")

Question 1 Using the qnorm() function, find the critical values associated with an 80% confidence interval.
How do these compare to the critical values of a 95% confidence interval? Explain.
## 95 has larger CV
qnorm(c(0.1, 0.9))

## [1] -1.2816 1.2816
qnorm(c(0.025, 0.975))

## [1] -1.96 1.96
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Question 2 This question will use the hawks data. The code below will load the hawks dataset which we
will use for the first parts of this problem. It will also create hawks2, a randomly sampled subset of the data.
hawks <- read.csv("https://collinn.github.io/data/hawks.csv")

(a) Subset the hawks data using dplyr to include only Red-tailed hawks (Species == "RT"). How many
observations are in this dataset?

(b) Create a histogram of the variable Weight. What does it look like? Based on your experience with the
CLT lab, how well do you think a normal approximation will fit the sampling distribution?

(c) Find the sample mean and standard error for the Weight variable. Use the qt() function to find the
appropriate quantiles to create a 95% confidence interval for the sample mean. Use these to construct a
95% confidence interval

(d) Repeat the previous step, this time using the hawks2 subset created in the code chunk below. How
does the sample mean in hawks2 compare with the sample mean in hawks? How does the size of the
95% confidence interval compare? Does changing the size of the sample appear to have more of an
impact on the sample mean or on the confidence interval?

## First subset Hawks data with RT
# hwk <- filter(hawks, ...)

## Create subset of size n = 20
set.seed(89)
idx <- sample(seq_len(nrow(hwk)), size = 20)
hawks2 <- hwk[idx, ]

## Part A
hawks <- read.csv("https://collinn.github.io/data/hawks.csv")
hwk <- subset(hawks, Species == "RT")
dim(hwk)

## [1] 569 19
## Part B (looks normal, probably fit alright)
ggplot(hwk, aes(Weight)) + gh(bins = 15)
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## Part C
mm <- mean(hwk$Weight)
ss <- se(hwk$Weight)
qt(c(0.025, 0.975), df = nrow(hwk)-1)

## [1] -1.9641 1.9641
mm + c(-1.9641, 1.9641) * ss

## [1] 1079.1 1110.3
## Part D
set.seed(89)
idx <- sample(seq_len(nrow(hwk)), size = 20)
hwk2 <- hwk[idx, ]

## Mean same, CI larger because n smaller
mm2 <- mean(hwk2$Weight)
ss2 <- se(hwk2$Weight)
qt(c(0.025, 0.975), df = nrow(hwk2)-1)

## [1] -2.093 2.093
mm2 + c(-2.093, 2.093) * ss2

## [1] 1011.7 1177.7

Question 3 For this question, we are going to again use the college dataset

(a) Create a histogram of the variable FourYearComp_Males, the four year graduation rate for males

(b) Find the mean and standard deviation of the variable FourYearComp_Males. Use the qnorm() function
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to find the the 0.025 and 0.975 quantiles.

(c) Using the quantile() function the 0.025 and 0.975 quantiles of the variable college$FourYearComp_Males.
Would you expect these to be similar to what you found in part (b)? Why or why not?

(d) Why are the quantiles you found in this problem so different than the ones we found in the example
above using the same data? Be as specific as you can be.

## Part A
ggplot(college, aes(FourYearComp_Males)) + gh(bins = 10)
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## These should be similar since the samp dist is probably normalish
pp <- c(0.025, 0.975)
qnorm(pp, mean(college$FourYearComp_Males), sd(college$FourYearComp_Males))

## [1] 0.15300 0.79944
quantile(college$FourYearComp_Males, pp)

## 2.5% 97.5%
## 0.18722 0.82688
## Will be different from above as these are quantiles for the actual variable
## rather than the sampling distribution (point is to differentiate between distributions)

Question 4 Based on the histogram of the bootstrapped sampling distribution above, do you think that the
95% confidence interval constructed with bootstrapping should match what we would find using the point
estimate ± margin of error method? Explain your answer.

Yes because it looks approximately normal
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Question 5 Verify using the qt() function what you answered in Question 4.
mm <- mean(USArrests$Murder)
ss <- se(USArrests$Murder)

mm + qt(c(0.025, 0.975), df = nrow(USArrests)-1)*ss

## [1] 6.5502 9.0258

Question 6 This question uses the Grinnell Rain dataset. Typically, this dataset includes precipitation data
on 121 months; here, we will collect a sample of size n = 20 instead
## Load data
rain <- read.csv("https://collinn.github.io/data/grinnell_rain.csv")

## Subset
set.seed(10)
idx <- sample(1:nrow(rain), size = 20)
rainsub <- rain[idx, ]

Part A Using your sample rainsub and the qt(), attempt to create an 80% confidence interval using the
point estimate ± method (i.e., median ±C × σ̂/

√
n)

Part B Use the bootstrap() function to bootstrap 1,000 samples of the median statistic. With your
resulting data frame, create a histogram of the sampling distribution. Based on this, does it seem like the
confidence interval you found in Part A is appropriate? Why or why not?

Part C Use the quantile() function to create an 80% confidence interval for the median. How does this
compare with what you found in Part A?

Part D Now using the full rain dataset, find the true median value of the population. Does it fall within the
intervals you constructed in Part A? How about Part B? Why did it work for one and not the other?
## Part A
mm <- median(rainsub$precip)
ss <- se(rainsub$precip)
mm + qt(c(0.1, 0.9), df = nrow(rainsub) - 1)*ss

## [1] 0.51033 1.25967
## Pat B (not valid because not normal)
bs <- bootstrap(rainsub$precip, median)
ggplot(bs, aes(Statistic)) + gh(10)
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## Part C (much larger than A)
quantile(bs$Statistic, probs = c(0.1, .9))

## 10% 90%
## 0.515 2.090
## Part D -- falls in C, not A because CLT not appropriate
median(rain$precip)

## [1] 1.68
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