Decision Error

Grinnell College

Nov 15, 2024

The rest of the tools we will learn about in class invovles testing for *differences* or *associations* between groups which may help inform your project goals

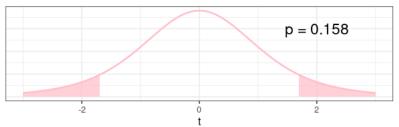
Туре	Continuous	Categorical
Simple Test	<i>t</i> -test	Single Proportion
2 Groups	Two-sample <i>t</i> -test, paired test	Difference in Proportion
Multiple Groups	ANOVA	$\chi^2~{ m Test}$
Mixed variables	Regression	Regression

So far, our process has been as follows:

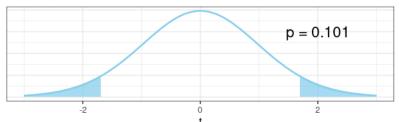
- 1. Being with a null hypothesis, $H_0: \mu = \mu_0$
- 2. Collected data and comptute statistic, i.e, \overline{x}
- 3. Compare our statistic against the null distribution, i.e., $t = \frac{\overline{x} \mu_0}{\hat{\sigma} / \sqrt{n}}$
- 4. Derive a *p*-value based on the statistic and the distribution Today, we will address the question of whether or not our oberved data is consistent with our hypothesis

Comparison

t = 1.69, df = 5



t = 1.69, df = 30



Based on the evidence we have collected, we must ultimately decide between one of two decisions:

- 1. There is sufficient evidence to reject H_0
- 2. There is *not* sufficient evidence to reject H_0

Just as our confidence intervals were correct or incorrect, so to may be our decision regarding H_0 . In this case, however, there are two distinct ways in which our decision can be incorrect:

- 1. H_0 is TRUE (i.e., there is no effect), yet we reject anyway
- 2. H_0 is FALSE (i.e., there is an effect), yet we fail to reject it

These two types of errors are known as Type I and Type II errors, respectively:

- 1. H_0 is TRUE (i.e., there is no effect), yet we reject anyway
 - Type I error
 - "False positive"
 - Evidence leads to wrong conclusion
- 2. H_0 is FALSE (i.e., there is an effect), yet we fail to reject it
 - Type II error
 - "False negative"
 - Not enough evidence to conclude

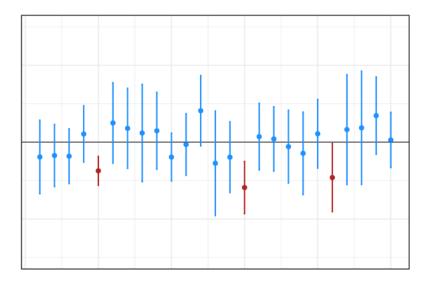
	True State of Nature	
Test Result	<i>H</i> ₀ True	H ₀ False
Fail to reject H_0	Correct	Type II Error
Reject H ₀	Type I Error	Correct

A Type I error describes a situation in which we incorrectly identify a null effect:

- Conclude that an intervention works when it does not
- Conclude that there is a relationship between two variables when there are not

A Type I error will occur, for example, when our constructed confidence does not contain μ_0 when $\mu_0=\mu$

Type I Errors



We can control the rate at which we commit Type I errors with adjusting the *level of significance*, denoted α .

This is also called the Type I error rate

The Type I error rate has a *one-to-one* correspondence with our confidence intervals: a 95% confidence interval will permit a Type I error 5% of the time, corresponding to $\alpha = 0.05$

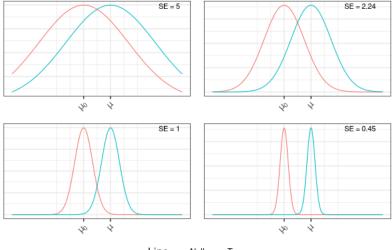
We *reject* our null hypothesis when *p*-value $< \alpha$

A Type II error describes a situation in which the null hypothesis is false, yet based on the evidence gathered we fail to reject it:

- An intervention has a clinical effect, but it is not detected
- An email is considered spam, but the filter does not detect it

Typically, a Type II error is the result of one or more factors:

- Too few observations in our sample
- The population has large variability
- The effect size is small



The Type II error rate is typically denoted β

More frequently, we consider the rate at which Type II errors do not occur $(1 - \beta)$, a term we refer to as *power*

A study that is unable to detect a true effect is said to be underpowered

Consider the following analogy 1: you send a child into the basement to find an object

- What is the probability that she actually finds it?
- This will depend on three things:
 - How long does she spend looking?
 - How big is the object she is looking for?
 - How messy is the basement?

¹Stolen from Patrick Breheny who credits the text *Intuitive Biostatistics*, which in turn credits John Hartung for this example

If the child spends a long time looking for a large object in a clean, organized basement, she will most likely find what she's looking for

If a child spend a short amount of time looking for a small object in a messy, chaotic basement, it's probably that she won't find it

Each of these has a statistical analog:

- How long she spends looking? = How big is the sample size?
- ▶ How big is the object? = How large is the effect size?
- How messy is the basement? = How noisy/variable is the data?

Drawing Conclusions

As we never truly know whether H_0 is correct or not, we must simultaneously be prepared to combat both types of error

	True State of Nature	
Test Result	H ₀ True	H_0 False
Fail to reject H_0	Correct	Type II Error
	$(1 - \alpha)$	(β)
Deiget U	Type I Error	Correct
Reject H_0	(α)	$(1 - \beta)$

- ► Type I error = P(Reject H₀|H₀ true) = false alarm
- ▶ Type II error = $P(\text{Fail to reject } H_0 | H_A \text{ true}) = \text{missed opportunity}$

Although the $\alpha=$ 0.05 is customary for Type I error rate and a cut-off for "statistical significance", this is no substitute for correctly evaluating context

For example, a highly publicized study in 2009 involving a vaccine protecting against HIV found that, analyzed one way, the data suggested a p-value of 0.08. Computed a different way, it resulted in a p-value of 0.04

Debate and controversy ensued, primarily because the consequence of using a particular method was the difference between a result being on other side of the $p < \alpha$ threshold

But is there really that much a difference between p = 0.04 and p = 0.08?

Consider conducting 2 hypothesis tests, each with a Type I error rate of 5%

For any given test, the probability of not making an error is

P(No type | error) = 0.95

- 1. What is the probability that neither test has a Type I error?
- 2. What is the probability that at least one test has a Type I error?

Example

Suppose that I am interested in testing if there is a non-zero correlation between cost and average faculty salary in each of the 8 regions of our college dataset

Suppose further we are testing for significance at the level $\alpha = 0.05$

	Region	<i>p</i> -value
1	Far West	0.7667
2	Great Lakes	0.0085
3	Mid East	0.0001
4	New England	0.0061
5	Plains	0.9487
6	Rocky Mountains	0.7394
7	South East	0.0143
8	South West	0.0344

Example

Suppose that I am interested in testing if there is a non-zero correlation between cost and average faculty salary in each of the 8 regions of our college dataset

If my Type I error rate for each test is 5%, what is the probability that I make at least one Type I error?

$$P(\text{At least one Type I error}) = 1 - P(\text{Probability of no Type I errors})$$
$$= 1 - (1 - 0.05)^{8}$$
$$= 33.6\%$$

That is, instead of making a Type I error 1 in 20 times, we are now making it 1 in 3 times

For a collection of independent hypothesis tests, the **family-wise error rate (FWER)** describes the probability of making one or more Type I errors

For m independent tests with a Type I error rate of $\alpha,$ the FWER is defined as

$$\mathsf{FWER} = 1 - (1 - \alpha)^m$$

Just as we control the Type I error rate of a single hypothesis test with $\alpha,$ we also have an interest in controlling the FWER

For *m* hypothesis tests controlled at level α , the correction $\alpha^* = \alpha/m$ is known as the **Bonferonni Adjustment**

If instead for a series of m tests we reject the null hypothesis when $p<\alpha^*,$ we will control the FWER at level α

Assuming the 8 regions of our hypothesis test are independent, our Bonferonni adjustment for $\alpha=$ 0.05 should be

 $\alpha^* = 0.05/8 = 0.00625$

Testing $p < \alpha$		
	Region	<i>p</i> -value
1	Far West	0.7667
2	Great Lakes	0.0085
3	Mid East	0.0001
4	New England	0.0061
5	Plains	0.9487
6	Rocky Mountains	0.7394
7	South East	0.0143
8	South West	0.0344

Testing $p < \alpha^*$		
	Region	<i>p</i> -value
1	Far West	0.7667
2	Great Lakes	0.0085
3	Mid East	0.0001
4	New England	0.0061
5	Plains	0.9487
6	Rocky Mountains	0.7394
7	South East	0.0143
8	South West	0.0344

Review

Based on the evidence observed, we will ultimately make one of two decisions:

- 1. Reject H_0
- 2. Fail to reject H_0

Depending on the true state of H_0 , we can be incorrect in two ways:

- 1. Type I Error (α): H_0 is true, yet we reject anyway
- 2. Type II Error (β): H_0 is false, yet we fail to reject it

Finally, there is the issue of *multiple testing*

- 1. Family-wise error rate
- 2. Bonferonni correction