Analysis of Variance (ANOVA)

Grinnell College

Dec 2, 2024

Review

Identify the statistic and null hypothesis associated with the following:

- \blacktriangleright Single quantitative variable
- \blacktriangleright Two quantitative variables (two types)
- \triangleright Single categorical variable
- \blacktriangleright Two categorical variables

Also be prepared to explain:

- \triangleright What is the relationship between the null hypothesis and a sampling distribution?
- ▶ What is the relationship between a sampling distribution and an observed statistic?

Tests so far:

- \blacktriangleright Difference in means
- ▶ Difference in proportion
- \blacktriangleright Goodness of fit
- ▶ Independence of two categorical variables

Today we are extending our set of tests to include testing the difference in means in multiple groups

The Analysis of variance (ANOVA) is a collection of statistical models used to analyze difference among many means

The null hypothesis is testing the difference of means between k groups

$$
H_0: \mu_1 = \mu_2 = \cdots = \mu_k
$$

$$
H_A: \text{at least one } \mu_i \neq \mu_j
$$

But what does this have to do with variance?

Dog Speed

Collected 400 dogs from 8 different breeds, each a sample of 50. Each set has 25 black dogs and 25 dogs of one other color. For each dog, I also recorded land speeds in miles per hour (mph)

What variables will do best in helping me predict speed?

Dog Size

Dog Color

Dog Breed

The total variability of a sample can be broken into two parts:

- \blacktriangleright Variability within groups
- ▶ Variability between groups

How did variability *between groups* and *within groups* compare when we looked at dogs grouped by size versus by color or by breed?

Recall our null hypothesis for ANOVA

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ H_A : at least one $\mu_i \neq \mu_i$

- ▶ Low within group variabilty ⇔ tight knit clearly defined group around a mean
- $▶$ High between group variability \Leftrightarrow the groups are clearly distinct from one another

Variability and You

Variability and You

A common metric for variability is the sum of squares giving total squared distance between observations and mean

$$
\mathsf{TSS} = \sum_{i}^{n} (x_{ij} - \overline{x})^2
$$

where $i = 1, \ldots, n$ indicates the observation and $j = 1, \ldots, k$ indicates the group. We can always decompose this into a sum of two sums of squares

Within-group Variability

Within-group variability is associated with a standard sum of squared errors (SSE)

$$
\textsf{SSE} = \sum_{i=1}^n (x_{ij} - \overline{x}_j)^2
$$

This can also be written as the *weighted* sum of group standard deviations

$$
\mathsf{SSE} = \sum_{j=1}^k (n_j-1) s_j^2 = (n_1-1) s_1^2 + (n_2-1) s_2^2 + \cdots + (n_k-1) s_k^2
$$

As this sum involves estimating k different group means, $\overline{\mathsf{x}}_j$, we have $n - k$ degrees of freedom, giving the mean of this metric to be

$$
MSE = \frac{SSE}{n - k}
$$

This describes how different each of the groups are from one another

Also known as the sum of squares between groups (SSG), we can compute it by finding the weighted mean of group deviations:

$$
SSG = \sum n_i (\overline{x}_i - \overline{x})^2
$$

= $n_1(\overline{x}_1 - \overline{x})^2 + n_2(\overline{x}_2 - \overline{x})^2 + \cdots + n_k(\overline{x}_k - \overline{x})^2$

As there are k groups, we can find the mean by dividing by k , less 1 degree of freedom from finding \bar{x} ,

$$
MSG = \frac{SSG}{k-1}
$$

Finding the means of SSG and SSE help keep the metrics interpretable when the number of groups or samples increases

Ultimately, then, what determines value the outcome of our test is the ratio between group variations and variation from error

$$
F = \frac{MSG}{MSE}
$$

What makes the F statistic larger:

- \blacktriangleright MSG increases
- \blacktriangleright *MSE* decreases

F distribution

Just as we are able to use to t-distribution in finding p -values for the difference of two means, we can use the F distribution to find a p -value for assessing the null hypothesis for ANOVA

Generally speaking, we are in good shape if:

- \blacktriangleright The distributions of the groups are roughly normal
- ▶ The variances between the groups are roughly similar. Generally so long as the standard deviation of one group doesn't exceed twice that of another

Again similar to the *t*-distribution, the F distribution is associated with degrees of freedom, in this case two, one for each of the mean squares in the ratio.

F distribution

Formulas

$$
\underbrace{\sum_{i}^{n}(x_{ij}-\overline{x})^{2}}_{SST}=\underbrace{\sum_{i=1}^{n}(x_{ij}-\overline{x}_{j})^{2}}_{SSE}+\underbrace{\sum_{j=1}^{k}n_{j}(\overline{x}_{j}-\overline{x})^{2}}_{SSG}
$$

 \triangleright SST = SSE + SSG

 \triangleright SSE = sum of squares within groups

- \triangleright SSG = sum of squares *between groups*
- $MSG = \frac{SSG}{k-1}$

$$
MSE = \frac{SSE}{n-k}
$$

$$
\blacktriangleright \ \ F = \tfrac{MSG}{MSE}
$$

Example 1

Example 1

F(2, 147) Distribution

Example 2

F(2, 147) Distribution

Annual Temperature – Grinnell

Annual Temperature

Temperature by Day

Temperature by Day

Temperature by Month

Temperature by Month

- ▶ Total variability made up of within and between group variation
- \triangleright ANOVA gives us a method for determining the relative sizes of these types of variation
- \blacktriangleright F statistic can be used as a measure of certainty