Data Visualization

Explanatory variable – suspected cause (independent variable) **Response variable** – suspected effect (dependent variable)

Univariate graph – show the distribution of a single variable. **Bivariate graph** – show the relationship between two variables.

One Categorical

One Quantitative

Two Quantitative

Two Categorical

One quantitative variable:

- 1. Shape is the distribution symmetric, skewed, bell-shaped, bimodal
- 2. Center where are the data centered (mean and median)
- 3. Variability How spread out are the data (range)
- 4. Unusual Points outliers or excessive zeros

Two quantitative Variables:

- 1. Form what type of trend or pattern exist(linear, non-linear, exponential, etc)
- 2. Strength how closely do the data adhere to a trend or pattern (strong, moderate, weak)
- 3. Direction how the values of one variable relate to the values of another variable(positive, negative)
- 4. Unusual Points outliers or excessive zeros

Numerical Summaries

robust statistic - statistics that tends to not be influenced by outliers

- Measures of centrality

Mean (X)	the arithmetic average of a variable (not robust)	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
Median	the middle value of the data if arranged from smallest to largest. (robust)	

- Measures of Spread

Standard	the average deviation(distance) of individual	$\int \frac{n}{1} - 2$
	observations from the mean value. (Not robust)	$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n-1} (x_i - \overline{x})^2}$

		n = number of observation
Variance(σ²)	measure that quantifies how much a set of numbers deviate from their mean.	variance = $\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$
Range	the difference between smallest and largest values	
Interquartile Range	the difference between the 75th quartile and the 25th quartile. (Robust)	Interquartile range = $Q_3 - Q_1$

Tables and Odds

– Tables

Contingency table - two way table in which both categorical variables have a binary response

	Event	Non-Event
Exposure	A	В
No Exposure	C	D

Exposure – presence of a factor that is being studied to determine its effect on a particular outcome **No Exposure** – absence of a factor that is being studied to determine its effect on a particular outcome

Event – the occurrence of the outcome of interest **Non-Event** – outcome did not occur

- Odds

 $Probability = \frac{number \ of \ success}{total \ number}$

 $Odds = number of success : number of fail = \frac{number of success}{total number - number of success}$

 $Odds \ Ratio = \frac{Odds \ of \ event \ in \ the \ exposed \ group}{Odds \ of \ event \ in \ the \ unexposed \ group}$

OR = 1	No association between the exposure and the outcome.
OR > 1	Positive association – the exposure increases the likelihood of the event.
	Example: OR = 2, the event is twice as likely to occur in the exposed group as in the unexposed group.
OR < 1	Negative association – the exposure decreases the likelihood of the event.

Example:

OR = 0.5, the event is half as likely to occur in the exposed group as in the unexposed group.

Z-Score

z-scores describes a value's relationship to the mean of a group of values.

The Z score of an observation is defined as the number of standard deviations it falls above or below the mean.

Z score of X_1 is Z_1 and Z score of X_2 is Z_2 . If $|Z_1| > |Z_2|$, then X_1 is more unusual than X_2 .

Examples	Equation
Observation is one standard deviation above the mean, Z score = 1.	$z_i = \frac{x_i - \bar{x}}{S_x}$
Observation is 1.5 standard deviations below the mean, Z score = -1.5.	x_i^{i} = one quantitative variable \overline{x}_i^{i} = mean value of the variable S_x^{i} = standard deviations above/below the average

Regression

Correlation

Correlation is stronger if r is closer to 1 or -1, weaker if r is closer to 0.

measures the strength of monotonic (non-linear) association between two quantitative variables	
Ecological correlations compare variables for data that have been aggregated at an ecological level. A correlation between two variables that are group means	Ecological fallacy – Ecological fallacies occur when we try to draw conclusions about individuals based on data collected at the group level.

– Regression line

Quantitative Regression	Binary Categorical Regression
$y = \beta_0 + x\beta_1$	reference type = $\beta_0 + 1_1\beta_1 + 0_2\beta_2$
$\beta_0 = intercept$	$\beta_1, \beta_2 = \text{Coefficient}$
$\beta_1 = slope$	$1_1, 0_2$ = Indicator Variables
^	β_0 = Average of the reference type
у	$\beta_1 + \beta_0 = average$ for one indicator variable
	$\beta_2 + \beta_0$ = average for the other indicator variable

- Coefficient of determination R²

Total sum of squares (SST)	distance between the mean of the observed and actual	$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$
Residual Sum of squares (SSR)	distance between the expected and actual	$SSR = \sum_{i=1}^{n} (y_i - \widehat{y_i})^2$
Coefficient of determination	proportion of the variance for a response variable that is explained by one or more explanatory variables	$R^2 = 1 - \frac{SSR}{SST} = r^2$

R² range from 0 to 1

- $R^2 = 1 \rightarrow$ regression model perfectly explains all the variability of the response variable
- $R^2 = 0 \rightarrow$ regression model explains none of the variability of the explanatory variables

Example:

 $R^2 = 0.8 \rightarrow 80\%$ of the variability in the response variable is explained by the explanatory variables, while the remaining 20% is unexplained and may be due to other factors or random noise.